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In the absence of undulating constant-energy surfaces a bound exciton state is
found to be present at any attracting defect in a semiconductor with a degenerate
valence band.

Analysis of the formation of the bound state of an exciton at a defect usually
reduces to the analysis of the localization of a particle whose mass is equal to the
translational mass of an exciton in a potential well. The bound state in this case occurs
only if the power of the well is greater than a certain threshold value. Defects with a
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power level lower than the threshold power have no bound state. We will show here
that this conclusion does not apply to semiconductors with a degenerate valence band.
We will also show that in the isotropic approximation any defect that attracts an
exciton, however slightly, forms a bound state.

The Hamiltonian of an exciton in a semiconductor with a degenerate valence
band is
2 2
2m e K i r e ™ r hI
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where r,, p, and r,, p, are the coordinates and momenta of an electron and a hole,
respectively; m, is the electron mass, « is the dielectric constant, and 7, is the
Luttinger Hamiltonian

A p2 p2 A
H,(p) = — A p®) F— A(p). (2)
2m, 2m

where m, and m; are the masses of the heavy and light holes, and A, Py =9/
8 —( pJ y%/2p* and A, =1- A,, are the operators of the projection onto the states of
the heavy and light holes, respectively: J is the spin angular momentum operator with
a spin 3/2 (Ref. 1).

In the Hamiltonian (1) the variables are not distinguished, so the motion of the
exciton as a whole cannot be separated from the relative motion of an electron and
hole in it. Such a division is, however, possible at large momenta of the translational
motion ¥, such that P?/2m;>E,, where Ep = m,e*/2#«”>. The last condition
means that the splitting of the excitonic Mranches associated with the heavy hole is
much greater than the binding energy E; of an exciton (we assume m,>m, ~m;,).
The dispersion relation of a “heavy” exciton in this case is?

4E*m
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and the corresponding wave functions are
s mR) = w(r)Fg, (R) _ 4

3
B,®) = e"R/“xu(ﬁ) , (5)

where R = (m,r, + m,r,)/(m, + m;), ¥ =r, —1,, @, is the hydrogen-like function
of the ground state, and y,, ( Z) is the exgenfunctlon of the operator (J& )/ 7 (J 7 )/
Pxu (D) _,u)(ﬂ(ﬂ) where the p subscript in (4) has the values + 3/2.

Using the same approximation, we find an effective Schrodinger equation which
describes the motion of an exciton in the field of a defect. To be specific, we will
assume that the potentia} of the defect affects only the hole. We can then write this
equation in the form
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1
We will seek its solution in the form

FR=_ T A3 F3,(R). (7
Pu=s¥ T

Because of the condition (2m,E)"?, we can ignore the “light”-exciton component
which corresponds to 4 = + 1/2. Assuming that the radius of the potential ¥(R) is
much smaller than the wave function F(R), we find the following expression for the
coefficients 47 ,:

2
_ WFOX,(P) ®

E—e(P)

N
A
h

where W = §d*rV(r). Substituting (8) into (7) and setting R = 0, we find an equa-
tion for the binding energy

A -

A, ()

1=wWZx . 9
" E—eiiﬁ;

We will show that this equation has a solution for any negative value of W, however
small. The dispersion relation €(# ) has a minimum at & = Z,= (8E%m,m,)"*.
Near this minimum we have €(Z) = e(Z%,) + 2/m, (# = Z,)*. It is easy to reck-
on the energy E from €(Z,): E = (% ,) = A. The contribution to the sum (9) from
Z,, which is approximately equal to &, is proportional to A~"/? and diverges as
A—0. As a result, we obtain the following expression for the binding energy

Wim, ?3 _ W2EZm?m,
327w hs 4m*

(10)

This expression is valid if the condition A <€, = E, (2m,/m, )", which allows us to
restrict the analysis to momenta close to #, in sum (9), is satisfied. The physical
meaning of this result can easily be understood by calculating the state density of p(¢),
which corresponds to dispersion relation (3). If € is approximately equal to €(Z ),
pley~(e—€e(Zy)) ~1/2 j.e., it behaves the same way as it does in the case of a one-
dimensional particle which obeys the quadratic dispersion relation. In the one-dimen-
sional case, however, every attracting potential has a bound state.

The energy level (10) is fourfold degenerate. The corresponding normalized wave
functions are
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where y,,, are the eigenfunctions of the operator 32 ( 32 Xop = MXsy )- The functions F,
(R) are shown schematically in Fig. 1. The oscillator strength of the interband transi-
tion is the same for all states (11) and is proportional to

f=I[d°RE,(R)1%= 93/ 21> (m, A) 2/ 94, (12)

It is useful to compare this quantity with f,—the enormous oscillator strength of an
exciton bound to a short-range defect with the same binding energy A but in nonde-
generate bands®: ( f/f,) = 97°/8) (A/€,)’. The rapidly oscillating function F,, (R) ac-
counts for the small value of this relation (A <ep).

We considered the case in which only a hole interacts with the defect. The case in

Mo

FIG. 1. (a) Energy position of the bound state of an exciton at a defect and (b) schematic representation of
the relevant wave function.
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FIG. 2. Dimensionless state density p(¢€) corre-
sponding to dispersion relation (13) for the ani-
sotropy parameter values [, = (v, — 2¥:)m,/
my =07 and T, = (yy —2p,)m,/my= 14—
curve 1 and T, =0.5 T, =1l4—curve 2.

Dashed curve—The state density in the absence of
undulating (irregular) surfaces, Iy = ey = 1

min

which the potential of the defect acts on the electron can be analyzed in a similar way.
The binding energy of the state corresponding to u = + 3/2 in this case is different
from that of the state corresponding tou = + 1/2. Foru = + 3/2 it is equal to 2Am,
/m, and for p = 4 1/2 it is 927 Am¥*/m;/2.

Taking the corrugation of the valence band into account allows us to write disper-
sion relation (3) in the form*

4E*m
e(@)= ———q)f ¢ - Ep
o0 262 @202
N —\/12+12 WL RAAE (13)
2mo 71 72 ' (73_72) ?4 ’

where m, is the mass of the free electron, and ¥,, 7,, and ¥; are the Luttinger param-
ete:_gs5 [relation (13) becomes relation (3) if ¥, = y;. The position of the minimum
€(Z) in this case depends on the direction of the vector &, which accounts for the
blurring of the structural feature in the state density p(€). The results of a numerical
calculation of p(€) in units of p,=m}* 2e,/27°#, where (), =5my/
(57, — 675 — 4¥,)), for two sets of parameters of the anisotropy are shown in Fig. 2.
Taking the inhomogeneity into account, the bound state can occur only when the
parameter |W| is larger than a certain threshold value |W,| = n#*/E *m}/*m}*

e

where the constant 77 depends on the anisotropy parameters. The values of 7, are 2.8
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and 3.5, respectively, for the values of these parameters which correspond to curves 1

and 2 in Fig. 2.
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