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The fluctuations which arise in the diamagnetic susceptibility of disordered metals
because of the random distribution of impurities in them have been studied. These
fluctuations are shown to be substantially larger than the susceptibility averaged
over realizations of a random potential.

The expression for the thermodynamic potential of the conduction electrons in a
static magnetic field is ordinarily used to calculate the diamagnetic susceptibility of
metals. We believe, however, that a different method would be more convenient for
dealing with the effect of collisions of conduction electrons with impurity centers on
the Landau diamagnetism and for studying fluctuations in the susceptibility which
stem from the random distribution of impurities. Specifically, one could study the
response of the system to a static external magnetic perturbation. If a field with a
vector potential A = aexp(/kr) is applied to the system of conduction electrons in the
metal, and if this field satisfies the gauge condition (kA) = 0, the diamagnetic current
is given, in first order in A, by’
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where p, =p & k/2. The retarded and advanced Green’s functions of an electron,
averaged over the random distribution of impurities, in (1) are given by
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where u is the chemical potential, and 7 is the momentum relaxation time of the
electrons (here and below, we are using a system of units with i=c =k =1). Itis
easy to see that the expansion of (1) in powers of the vector k begins with the quadrat-
ic term. Carrying out the expansion, and restricting the analysis to the term quadratic
in the wave vector, we find
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It follows immediately from this expression that Landau’s result for the diamagnetic
susceptibility,
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holds over broad ranges of the temperature and density of impurity centers. The only
restriction on the density of the impurities is the condition €,7>1 (&, is the Fermi
energy, and p, is the Fermi momentum). The reader is referred to Ref. 2 for further
information regarding this assertion.

It has recently been learned that the conductivity of a specific sample with a given
random distribution of impurities may differ substantially from the conductivity aver-
aged over realizations of a random potential.*” This assertion also applies to certain
other characteristics of a disordered metal.®®

The fluctuations in the diamagnetic susceptibility are particularly large in disor-
dered conductors. To calculate the fluctuations in the diamagnetic susceptibility, we
should average the square of current density (2) over the impurities. It is not difficult
to show that the average expression for the square of the current is dominated by the
terms which contain Green’s functions raised to the fourth power. After going through
the procedure of taking an average and integrating over the momenta of the electrons,
we find the following expression for the average square current in the limit of a dirty
metal, T7<1:
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where v, is the Fermi velocity, and v = mp,./27” is the state density of electrons near
the Fermi energy. In the absence of a magnetic field and in the absence of magnetic
impurities, a cooperon C,(q) and a diffusion D, (q) are equal:

1
c,@ =D,(@ = (Dq —iw)™ !, (5

where D = vi7/3 = [%/37 is the diffusion coefficient, and / is the electron mean free
path.

In (4), we have (dg) = d?q/(2m)?L>"7, where d is the dimensionality of the
sample. If the sample is a thin film of thickness L <y D /T ~1/yTr, we haved = 2. In
the case of a thin filament, with a radius less than / /{77, we would have d = 1.

After an integration over the energies € and € in (4), we find
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Going through the integration and the summation in (6), we find the following
expression for the average square susceptibility:
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where £(x) is the Riemann zeta function. The numerical coefficients in (7) are
C,=(1/4)y3/27C, =2/37,C, = S/W. In the case of small particles, with a linear
dimension smaller than / /\/—T‘T, we would have C, = 4/3.

In the case of a low dimensionality, d < 3, it is assumed that the mean free path /
is far shorter than all the linear dimensions of the sample. Otherwise, we should
incorporate the collisions of electrons with the boundary of the sample. Accordingly,
the condition /<L </\Tr should hold for samples of low dimensionality. It follows
from the final result, (7), that even in the case of a three-dimensional disordered metal
the fluctuations in the susceptibility from sample to sample would be so large that the
relation (y*)> (y)* = y; would hold.
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