Formation of dense emitting plasma bands (marfes)
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A two-dimensional energy-balance equation for the plasma in a tokamak is
analyzed. Radiative loss is taken into account. The formation of marfes may be
thought of as a bifurcation of the solutions of the energy-balance equation.

Experiments at many tokamaks at plasma densities near the critical value, where
radiative energy loss plays a major role, have revealed the formation of dense, relative-
ly cool, and intensely emitting bands of plasma called “marfes,”’ which usually local-
ize near the inner boundary of the plasma column. The lifetime of the marfes in the
TFTR and the JET reaches several seconds,” demonstrating the stability of these
poloidally asymmetric structures. Lipschultz et al.' have suggested that marfes may
originate from a nonmonotonic dependence of the power of the impurity radiative loss
on the electron temperature 7T, as in the corona approximation.’ Analysis of the linear
stage of a radiative instability*® has revealed that poloidally asymmetric modes may
develop at a growth rate higher than that for a poloidally symmetric mode. In the
present letter we retain the radiative model for an analysis of the nonlinear stage of the
onset of marfes, working from a two-dimensional nonlinear energy-balance equation
for the plasma.

We assume that the thermal conductivity of the plasma across the magnetic field
is given by k, =«, T*~ /3, while that along the magnetic field is described by the
classical expression x) = (2/7)x T5/2, where 8 is an adjustable parameter, and &,
and «;; are normalization constants. Ignoring the convection terms, we write the ener-
gy-balance equation for the plasma at the periphery of the column, r~a (a is the
minor radius of the tokamak), where the marfes usually arise, as follows:
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Here 0 = T#; x =a — r; ¢ is the poloidal angle; ¢ is the safety factor; R is the
major radius of the tokamak; and the function Q(6) models the 7 dependence of the
radiative loss.

We are interested in asymmetric solutions of (1) which are not stimulated by an
asymmetry of the boundary conditions at x =0 or x— « (the center of the plasma
column). We accordingly restrict the discussion to the two-mode approximation,
0(x,p) = 0,(x) + 6,(x)sin ¢, adopting the following as boundary conditions on (1):
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Here W is the energy flux density directed away from the central part of the column
to the periphery; W, is the energy flux density to the scrape-off layer; and G(8) shows
the dependence of W, on 6, (0), which can be found from the solution of the energy-
balance equation for the scrape-off layer. We will not need the explicit expression for
G(9), and we will restrict the discussion to qualitative arguments, assuming that G(8)
is a monotonically increasing function of 6.

We consider poloidally symmetric solutions of (1). From Egs. (1)-(3} we find
an equation for 8, = 8,(x = 0):
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under the assumption that Q(8) falls off rapidly with increasing 6.

It is not difficult to see from (5) that for a nonmonotonic functional dependence
Q(0) of the type Q(8) = Q. (1 — (1 — 8/8.)?), where Q. and 0. are characteristic
parameters of the function Q(8), and at a low impurity density »,, with Q~n; and
fo=2k,55Q(dO /W2, <1, two stable solutions (5) can exist. The two solutions
correspond to “weak” and “strong” radiative losses. The transition between these
states as #, is increased may be abrupt, in accordance with the results of the linear
analysis of the stability of the energy balance at the periphery of the plasma column
which was carried out by Ohyabu.® In the case f, > 1, there may be no more than a
single stable solution (5); it would correspond to a weak radiative loss.

We now consider poloidally asymmetric solutions of (1). Taking an average of
(1) over the poloidal angle with weights of 1 and sin ¢ for @ = 1 and 2, and assuming
(0) = Q.6(6— 6.) [6(y) is the Dirac 5-function], we find
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where é(y):l(y>0),0(y<0); to=(0,—0.)/0.: t,=0,/0.;5=x/
rore =K,0./W_; fo=26Q./W? 5 and ¥ =ik, 0% (20.)° ' /(gRW  )*.

A solution of (6) of the marfe type, with the emitting zone concentrated in a
small arc of the poloidal angle, A@ =1 corresponds to the condition that the relative
change in ¢, and ¢, is small at ¢ R f,=~t. >0, i.e., the case in which there is a radiative
loss in (6). In this case, integrating (6) separately in the £ regions #; <#, and
t,>ty=t., and using (2)-(4), we find the following system of equations for . and ¢,
=¢, /0. —1 (a = 1):
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tan—! k(fy — tL) 1= 1 +g () , (8)

g(tL) Kly

where g = G/W_ and f,;, = 2m(1 + kt. )kt /3.

It follows from (7) that a necessary condition for the existence of solution (7),
(8) is g < 1/3. The condition Ap =1 holds at f, 51, i.e, if there exists no poloidally
symmetric stable solution of (1) with an intense radiative loss, as was shown above.
The quantities ¢, and ¢, themselves are found from the specific functional dependence
g(1); their determination goes beyond the scope of the present paper. For a = 2, the
solution of (6) again leads to equations like (7), (8), but we will not reproduce those
lengthy results here. We simply note that the existence of marfe solutions in this case is
limited by the conditions g < 1/3, f,* 1.

In summary, the model examined in this letter shows that the onset of marfes
may be thought of as a bifurcation of the solution of the energy-balance equation
which results in the appearance of poloidally asymmetric solutions characterized by a
strong radiative loss, comparable to the plasma-heating power.

'B. Lipschultz et al., Nucl. Fusion 24, 977 (1984).

’B. Lipschultz, J. Nucl. Mater. 145-147, 15 (1987).

3D. E. Post et al., At. Data Nucl. Data Tables 20, 397 (1977).
4J. Neuhauser et al., Nucl. Fusion 26, 1679 (1986).

°J. F. Drake, Phys. Fluids 30, 2429 (1987).

®N. Ohyabu, Nucl. Fusion 9, 1491 (1979).

Translated by Dave Parsons

322 JETP Lett,, Vol. 48, No. 5, 10 September 1988 S. 1. Krasheninnikov 322



