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A direct calculation of the determinant of a scalar Laplacian on a Riemann surface
with an edge in terms of the determinant of a scalar Laplacian on a double and the
matrix of periods of the double is proposed.

1. In the first-quantization formalism for open strings, integrals over fields on
Riemann surfaces with an edge are evaluated. A Riemann surface T with p handles
and an edge I" consisting of 7 + 1 components can be represented as a factor space of
a closed Riemann surface D of type 2p + m (called a “double”) in terms of an antiho-
lomorphic Z, isometry: T = D /Z,. The boundary I" consists of the fixed points of this
isometry; the Z, symmetry of the double induces a Z, symmetry of the holomorphic
differentials on it: With the differential w(z) one associates a differential

w*(z) = Jw(z*), where z* is the transform of z in the case of Z, symmetry.

The space of all functions on the double is equal to the direct sum of the spaces of
Z,-even and Z,-odd functions, so a determinant on a double is equal to the product of
determinants calculated from even and odd functions. The functions on ¥ with a zero
normal derivative at the boundary (which satisfy the boundary condition for open
strings) are continued in a single-valued way to even functions on a double, while
functions on 3 which vanish at the boundary are continued to odd functions, so we
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have
det) A=det! A.detgA. (N

open

On the other hand, if we write det}, A as a path integral over Grassmann fields ®
and evaluate it, integrating first over the fields ¢ with fixed values ®. on I'" and then
over all such values, we find

N™'dety) A=K det} A,
K=n"'{'D® D expS,, Sy =i] (3Dr3D—3Pn3D), (2)

where ®, = ®, (P ) is a harmonic function on 2, equal to ®- on I'. The double area
N and the boundary length n constitute the normalization of the zero modes.

It follows from (1) and (2) that a scalar determinant in the theory of open
orientable strings can be expressed in terms of a scalar determinant on a double in the
following way:

N Vet A=(KNdetp A)V3. (3)

open

We calculate K explicitly in this letter (other methods for doing so are described in
Refs. 1-3).
2. An arbitrary harmonic function on £ can be written unambiguously in the
form
~ Iptm z _ -
¢, =f(z)+tg(2)+ k_E_ Ocka, Fo=1, F, = [ (W + Er o w), k=1,2p+m,

(4)

where f(z) is a holomorphic function, g(z) is an antiholomorphic function (neither is
a constant), w, are canonical differentials on the double, and the coefficients «,, are
chosen in such a way that the function F, is single-valued on X.

In this section of the letter we propose a method for calculating K, in which it is
obvious that the contribution to K from time f(z) and g(z) is equal to a constant
which does not depend on the moduli.

We switch to an integration over all the harmonic functions in (2), replacing Sy
by S¢ + R, where R is a zero-mode regulator which does not depend on the metric.

The determinant of an operator which differentiates along the boundary is like K
in that it can be written as a path integral over all of the harmonic functions:

I={D®_ DB exp($, (R), S, =i £$h (3+2)®, . (5)

Since I depends on neither the metric nor the moduli of surface X, the calculation of X
reduces to a calculation of the ratio K /1. Transforming in the numerator and denomi-
nator of the ratio K/I from the measure |[D®-|? to the measure
D®,|> = |DfDgll#*,"de, |?, which - corresponds to representation (4) [here
|Df|? (|Dgl?) is some measure on the space of (anti-) holomorphic functions], we find
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K [1D&, I* exp(S, ~fifof +figdg)
- 12 . 7 - ? (6)
I /1 D®, I* exp (8] +fifaf +figdg)

where S v = 2, CoSny (Fk, F)Y+RM=LK In derlvmg (6) we used the representa-
tion of Sk as an integral over the boundary if - ~®, (0 — 3)®,,, and also the circum-
stanice that the integrals of gdf, fi, and fw over the boundary are zero since they are
integrals of differentials which are holomorphic on X (under the restriction w = w* at
the boundary).

An integration over holomorphic and antiholomorphic functions in (6) yields a
unit contribution (without a sign) to the ratio K /1.

3. To complete the calculation of K, we need to find S, and S,. This is essentially

a matter of finding the matrix §;w;Aw;. We will solve this problem in this section of
the letter by generalizing the Riemann relations to the case of a surface with an edge.

On a double we choose a system of cycles 4;, B;, i = y1,2p + m of such a nature
that for i = /1,p the quantity 4, lies at 3; for i = p + 1, p + m it is one of the compo-
nents of the boundary; and the cycle 4, ,, , ; is Z,-symmetric with respect to the
cycle 4;. The matrix of periods of the double is then

a b c
Ty=1 b7t ILT ’ 7
¢c b a

where ¢ is a real, symmetric m X m matrix, and ¢ is a Hermitian p X p matrix. cutting =

into cycles y = (A,-,B,.,%Bk LWi=1,pk=p+ 1,p+m (B,/2 is the half of cycle

B, which lies in X), we write the differential u, which is holomorphic on the double, in
the form u = df,. Carrying out transformations similar to those of Ref. 4, and noting
that for the differential w, which is holomorphic on the double under the restriction
w=w*on I', we find

fwAau=3%[ w-w*) [ u, (8)
z Y 7 £7¢%)

where for y = (A,-,B,.,—;—Bk) we have7(y) = (B,-,‘—A,A, —A,). From (7) and (8)
we find
2Rea+¢ 2Redb ¢
fwiaw, =i 2Re b7 r 0 |. (9)
=

c 0 -c

Relations (9) generalize the Riemann relations to the case of a surface with an
edge.

Substituting (9) into (6), we find the final expression for K
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t 2RebT

K=Idet(Re(a—c))/det(Reb Re(a+c))”

(10)

We note in conclusion that surfaces with an edge arise in multiloop string calcula-
tions based on the cutting of a surface of high type into simpler parts. The technique
proposed in this letter may prove useful for that approach.
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