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The basic properties of nuclear matter are determined on the basis of the QCD sum
rules. The equilibrium density and the binding energy are determined. The
expansion of the nucleon in the nucleus is estimated.

Formulation of a systematic theory of nuclear matter is one of the principal goals
of nuclear physics. Many studies' were based on nucleon-nucleon interaction and
therefore required the development of phenomenological representations. These mod-
els were introduced long before the appearance of QCD. Since QCD is regarded as the
true theory of strong interactions, it would be desirable to have a model of nuclear
matter based on QCD.

In this letter we will attempt to determine the basic properties of nuclear matter
on the basis of QCD sum rules.? Since this method takes into account, though in a very
sketchy way, the quark and gluon confinement, it is preferred over other QCD-based
methods that describe nuclear matter. Several properties of nucleons ranging from
static characteristics to deep inelastic scattering are described on the basis of this
method.

The sum rules in a vacuum are, as we know, the dispersion relations for the
polarization operator I1,(g*):

o(q*) =ifd*ye "7 (OIT {F(Wj(®}10), (1
where the hadron (proton) current is®
i) = ut(y)Cy, ub(y)ysy,d(y)e e gh". (2)

Here u and d are the quark fields, and C is the charge-conjugation operator. In the
dispersion relation the nucleon-pole component is clearly identifiable and the remain-
ing states are approximated by a continuum which begins at a certain point W?

A2 A,211(Q*)dQ*
no.(qz)__. ) + _l_ f __g__________ . (3)
q* —m w2 0—¢°

The operator I1,(¢*) was calculated by QCD methods, with allowance for the first few
terms of the expansion in powers of g~ 2. After a Borel transformation,® the sum rules
become a system of two equations for two tensor structures, ¢ and /, in I1,. Ioffe and
Smilga® showed that the difference between the left side and the right side of Eq. (3) is
minimized when

m=1GeV, 12=2.1 GeV®, W?=12.3 GeV? 4)
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in the stability interval
0.8 GeV2<M?*<1.4 GeV?, (3)

Let us determine how the quantities in (4) vary in nuclear matter. For this
purpose, we construct polarized current operator (2) in nuclear matter

IL.(qg) = ifd*ve™ Y (M| T {F(r)i(0)} M) (6)

and we write the dispersion relations for the difference II,, — Il;. Assuming that
stability interval (5) is the same for nuclear matter and vacuum, we find equations
that describe the variation of the quantities A,,, AA2% and AW? in (4).

The first quantity in (4) is related to the potential energy of the nucleon by the
relation

m?

Am

v=s —— , (7
1+ L
m.

where T = p%/2m is the kinetic energy, p, = (37%0/2)"/? is the Fermi momentum,
and p is the nucleon density. The quantity A *'is proportional to the quark wave func-
tion at the origin. Accordingly, AA ? gives us an estimate of the variation of the nucleon
radius in the medium.

The polarization operator in medium (6) depends on g” and on the component
do- The latter is determined on condition that the nucleon corresponding to the pole in
the dispersion relation belong to the nuclear matter. Ignoring the motion of nucleons,
we see that this corresponds to the condition

Sy =@ +1)’'m?, (8)

where A4 is the number of nucleons in the medium.

The function I1(g) now has, in addition to the singularities in ¢°, the specific
singularities in the variable u, = 2¢*> + 2M?% —s,, where M, is the mass of the
bound particle which is comprised of 4 nucleons. In a bound system in which the
binding energy € is larger than the separation energy 7, which nuclear matter is per-
ceived to be, the singularities in #, arise when

q>=m?+ 24m(e - 1), —€-7>0. (9)

) N N )

FIG. 1. Diagrams used in the calculation of the structure proportional to § in the polarization operator.

339 JETP Lett,, Vol. 48, No. 6, 25 September 1988 E. G. Drukarev and E. M. Levin 339



FIG. 2. Diagrams used in the calculation
d d of the structure proportional to g in the po-
larization operator.

The contribution from these singularities is exponentially small after the Borel trans-
formation.

Accordingly, the dispersion relation for I1,, — Il, has the form (3). Taking into
account on the right side of (3) only the terms which are linear in Am, A1 2, and AW ?,
we obtain a system of equations for two tensor structures ¢ and 1

4n[3m>Eo(M?) + (s - 4m*)Eo (M?) — M E; (M* ) MlﬂwulM>%
1 2
S M- LG MY — = (— T A Am = AN e M
m L M

4 2
A i
2 L

(10)

- 2m? 2 -m2 I’ -m? /M2 A2
~2r MA(M{dd | MYE, = (1—m)mx2e mM Am +me™ ™ AN
+ 2aWre W I AW? (~1); 4 = 0.55GeV?,

1 M 4/ 9

o

lnM//A &
i
(11)

w? )
Eof M?¥)= 1 —exp(— WX(M?); E1=1—<I+A72)8_(w2/M ); L=<

A=0.5GeV, u=0.15 GeV,

where the first two orders of the operator expansion are taken into account (Figs. 1
and 2).

In Eq. (10) the left side, disregarding the quark masses, does not depend on the
fact that the medium consists of nucleons; in this case we have (M |uyu|M ) =pn,,
where 7, is the number of # quarks in the nucleon, and (M | — (a,/7)G*|M ) = 8mp/
9.In Eq. (11), (M |dd |M ) = p(N |dd |N ) for the free nucleons. In the case of bound
nucleons it should be taken into account that they, having exchanged pions (in the
chiral limit only the single-pion exchange survives),* cannot acquire a momentum
lower than the Fermi momentum. It follows that
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- - 9 —_ 1
(Miqq|M)=p{NlqqIN}——p¥*(miqqlm) — , (12)
2 m,_
20 - m?
= K; (mlgqlm = I,
+md

(NlqqiN)
mn, N my m,
where m_ ., ,, is the mass of a pion (u, d quark).

Taking into account the motion of nucleons in matter and using Eq. (7), we
obtain, after minimizing the difference between the left side and the right side of Egs.
(10) and (11), the expression

U=[(—-34-94K){+54¢%3 + 3+ 04K)¢% ] MeV, (13)

where { = p/p,,, and p,, = 0.17 fm™* is the phenomenological value of the equilibri-
um density. The equilibrium density p thus depends on the exact value of the o term.
At o =50MeV (Refs. 5 and 6) for the equilibrium density p and the binding energy €
we find

p/pph =225, € =— 16 MeV, (14)

i.e., the description of the material is qualitatively correct.

Higher-order terms of the expansion of U(p) can be incorporated by introducing
into Eq. (11) some unknown condensates which are determined from the sum rules.
As a result, we obtain

U=[(-34-94Kk)+54¢Y3 + 3+ 04k Y3+ (23— D2+ (— 0.2k — 5)¢7/3

+(3-0.1k){ %3 ] MeV, (15)

P/th ;6 MeV
1.2

10

08

0 L { I 1 FIG. 3K\Equiliﬁgium den.sit}f p (in units of
8 10 2% ppn = 0.17 fm ™) and binding energy ver-
Sus «.
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which gives us the following values for o = 60 MeV (Ref. 6):
p=0.197 fm™% e = — 13 MeV; A1?>=0.23 GeV®. (16)

The plot of p and € versus « is shown in Fig. 3. This corresponds, from (16), to a
distention of a nucleon by ~3% in matter.

In summary, we have determined the basic properties of nuclear matter on the
basis of the QCD sum rules. This approach appears to us to be promising, since it
allows the phenomena occurring at large spatial separations in nuclei to be linked with
the hard processes occurring in them.

We wish to thank E. A. Akhmedov, Ya. Ya. Balitskii, B. L. Birbrauer, V. M.
Braun, B. L. Ioffe, A. V. Kolesnichenko, M. G. Ryskin, E. A. Sapershtein, V. A.
Khodel’, and M. A. Shifman for useful discussions.

'H. A. Bethe, Theory of Nuclear Matter, Russ. transl., Nauka, Moscow, 1973,

2M. A. Shifman, A. L. Vainstein, and V. I. Zakharov, Nucl. Phys. B147, 385 (1979).
B. L. Ioffe and A. V. Smilga, Nucl. Phys. B252, 109 (1984).

“S. Weinberg, Phys. Rev. 162, 342 (1965).

5V. P. Efrosinin and D. A. Zaikin, Fiz. Elem. Chastits At. Yadra 16, 546 (1985) (sic).
SH. Wiedner et al., Phys. Rev. Lett. 58, 648 (1987).

Translated by S. J. Amoretty



