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Quasistationary impurity electronic states which are coupled with local lattice
vibrations are analyzed in the Anderson model. The theory of a Fermi liquid is used
to calculate 7. If the coupling constant describing the coupling of the impurity
states with the vibrations is sufficiently large, even a small impurity concentration
may cause a significant increase in 7', . The isotopic effect does not correspond to
the BCS theory. Some consequences of the model for high-temperature
superconductors are discussed.

The Hamiltonian of an individual impurity is

= +

H=Zgn +Zen +X(VC a +H.a) + un.n,
Mg'Z , ,_2

+ aEnoq+—:-Z— + MwO?. (1)

The first four terms in H are the standard Anderson Hamiltonian.! The fifth describes
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the coupling of electrons with local vibrations. For simplicity, only a single vibrational
degree of freedom has been taken into account. The impurity level is assumed to be
nondegenerate.

Let us assume I'>w,, where T = 7| V|>’N(0) is the width of the quasistationary
impurity level [ N(0) is the state density at the Fermi surface]. As was shown in Ref.
2, an oscillator experiences an instability in the adiabatic approximation with £=a?/
Mol = &,. The quadratic term disappears from the potential energy, and a two-well
adiabatic term forms as ¢ is increased further. Depending on the value of ¢, the poten-
tial well may be either symmetric or asymmetric. The value of £, is determined by the
charge susceptibility at zero frequency. It is easy to show that we have
-—4&, v, (€,) =1 and that €, is the point at which y,, = — (1/4)d(n)/de reaches
its maximum ((n) = (n, ) + (1, )). An exact solution' of the Anderson model yields
the values of y,, for large values of U, which are always characteristic of states with an
atomic localization scale. To the extent that a two-well term forms, the adiabatic
approximation breaks down, because of the Kondo effect which results from a tunnel-
ing of the system between two states and the low-frequency response of the electron
subsystem to this motion. The situation is analogous to that which was studied in
Ref.3, although the initial Hamiltonian there is not the same as (1). In the symmetric
case, the electron subsystem undergoes quantum oscillations between two degenerate
states, which differ in the number of electrons in a local level. Under the condition
Us T, the behavior of the system is determined by a competition between the fluctu-
ations in the charge and those in the spin, which suppress each other. The single-
particle state density is characterized by the presence of a narrow ( ~ 7% ) resonance
near E.. If TS Ty €w, (T is the Kondo temperature), we can ignore the delay in
the response of the vibrational subsystem, whose role reduces to the appearance of an
attractive two-electron interaction U,, = 2{T. At U,, > U, the system is described by
Hamiltonian (1) with U= U, <0. A so-called negative U center forms (see Ref. 4
regarding the situation in the Hubbard model).

The effect of impurities with a strong local electron-phonon coupling on T, was
studied in Ref. 5 at { <&, and also in Refs. 6 and 7, in the Anderson model with U,
<0. A question which has remained open is the correct way to deal with both the
Coulomb repulsion in Ref. 5 and a strong electron attraction in Refs. 6 and 7. A
numerical simulation carried out in Ref. 8 with U= 0 yielded the derivative d7./
dc|._ o (cis the impurity concentration) Below we discuss two cases: a) The relation
& <&, holds, and there is no localized spin at the impurity. b) The relation & — £, R £,
holds for 2{T — U>0 and T« Tx €w,. Both cases correspond to the region 7€ Ty
(in the first case, to T, ~T'). We can thus use the theory of a Fermi liquid to calculate
the vertex of the electron-electron coupling, which appears in the equation for the gap.
Using the Ward identities, we can express the vertex in terms of the charge and spin
susceptibilities of the impurity, y,, and y,,, respectively. We carry out an ordinary
averaging over the positions of the impurities.”

In case a) we have T, ~wpexp( — 1/f), where

. (2)

>
f= X—N(Lgp—xch)awjvé X2,
1+ N(Xg, + X,y +4E°X],)
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Here A is the electron-phonon coupling constant (without impurities); N = ¢/N(0)I';
and £* =£/(1 —4y.,5) The frequency region corresponding to a repulsion, y,,
— Yen» 15 On the order of I'» w,. Related to this circumstance is the appearance of a
parameter a: an ordinary logarithmic renormalization. In the case £ = 0, expression
(2) is the same as that in Ref. 10, and it describes a suppression of superconductivity
by Anderson impurities. A numerical analysis of (2) with the help of the expressions
for y.;, and y,, from Ref. 1 shows that 7, can be raised substantially only in the region
A=(1— 4y, &) <1. For example, with €*/2T" = 0.3 (¢ is the renormalized value of €;
Ref 1), A=02,T/wp, =20, N=3 and £ =5, we find f=0.3, but even at £ =4 the
value of f'is considerably smaller. At small values of A there is a transition to a two-
well potential energy of an oscillator, and anharmonic terms are naturally important.
In the example above we have A=0.1, so we are right at the limit of the range of
applicability of the harmonic approximation.

In case b) we can use the symmetry (pointed out in Ref. 11) of the susceptibilities
under a change in the sign of U in a symmetric Anderson model. Specifically, the
quantity y,, — Y. is antisymmetric, while y,, + Y., is symmetric, under U~ — U.
Consequently, y,, and y,, exchange places. This is a consequence of the electron-hole
symmetry which was pointed out in Ref. 1. With 4 = 0 we have T, = Trexp( — 1/f),
where fis found from (2) through the replacements £ -0, a—1, and Xsp SXcn- At
T<Tg and |Ug |>T we have y,, - 7T /2T and y,, —0. In this case y,, determines a
fluctuation of the charge of the system, while y,, determines a fluctuation of the spin.
In the ground state, the behavior of this system is governed by quantum oscillations
between states with two electrons at an impurity and with an empty impurity level. As
in the case U> 0, charge fluctuations are suppressed. In this case, spin fluctuations are
suppressed. Since we have y,, > 1, f reaches saturation, f= 1, even at comparatively
small values of &. It should be recalled, however, that the theory is valid in the region
T, < Ty. According to Ref. 3, the value of T varies over a wide range. If we ignore
the delay in the attractive part of U, we can write'

2IUS II“I/Z
TK=—(—~-———ﬂf—)——exp(—'n'lUeff [/8T) - (3)
m

A question which remains open, however, is whether the parameter T /w, €1 deter-
mines the range of applicability of expression (3) in the case w, <I. In the approach
marked out in Ref. 3, w, is essentially an ultraviolet cutoff parameter, and it appears
explicitly in 7Ty at Ty €w,. With high-temperature superconducting oxides in mind,
we take account of the high frequency of the local vibrations of oxygen atoms, which
reaches 0.08 eV. We thus see that, in any case, fairly large values of 7T are completely
probable. The isotope effect is determined by the dependence of T on the frequency
w0 (with A =0),and it thus exhibits a nontrivial behavior. If expression (3) holds,
there is no isotope effect.

Because of the disorder which is characteristic of superconducting oxides, the
level € may be distributed over a fairly wide energy interval. Such a situation implies
that there will also be wide distribution of the “magnetic” fields which create an
asymmetry AFE in the energies of the two possible impurity states. The presence of a
wide distribution of energies of two-level systems should evidently cause these systems
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to make a linear contribution to the resistance. A likely center (at least for the yttrium
ceramics) at which a resonant state could form is an oxygen atom at the vertex of an
octahedron. For specifically this configuration the mean square displacement charac-
teristically has an anomalously large value.'> Furthermore, it follows from band calcu-
lations'® that the # level of oxygen makes a large contribution to a narrow band near
E.. An important point is that the vertex oxygen serves as a bridge for electrons in
different CuQ, planes. It is then clear that if there is a wide energy distribution of two-
level systems, the transparency for a resonant tunneling of electrons between planes
varies ~ T, while the resistance along the ¢ axis varies ~ T'~'. These conclusions agree
qualitatively with the observed anisotropy of the temperature dependence of the resis-
tance. These arguments of course ignore the universal component of the resistance
‘which is characteristic of Kondo systems, and they are valid only at T> Ti. It is
accordingly important to extend the theory to the region 7T, R Ty.

I wish to thank V. M. Agranovich and V. E. Kravtsov for a discussion.
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