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Liguid metal particles have an ellipsoidal shape with an eccentricity which
oscillates with increasing size of the particles. The Fermi energy of the particles
exhibits giant quasistochastic size oscillations.

In this letter we show that in addition to the well-known size oscillations in
thermodynamic quantities, there can be size oscillations of a completely different type:
in the shape of particles. At first glance, it would seem that the equilibrium shape of
liquid particles in the absence of force fields would be spherical. However, a spherical
shape is actually unstable for metal particles, since their surface energy in the case of
spherical shape would have a singularity because of the high degree of degeneracy of
the electronic levels. For liquid metals, the approximation of nearly free electrons
usually holds well. Accordingly, each electronic level is 2/(/ + 1)-fold degenerate in
the angular-momentum projection m. Since the radius of the particles, R, is large in
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comparison with electron wavelength k£ ', the typical orbital quantum number / is on
the order of kR. There is accordingly the possibility of reducing the electron energy of
a particle with a partially filled upper level by lowering its symmetry.

With increasing number (N) of electrons in the particle, and as the state with the
given [ becomes completely filled, spherical symmetry should be restored. When a
partially filled level appears again, the symmetry will be lowered again; i.e., the defor-
mation will be an oscillating function of N. In reality, the growth of N occurs during a
growth of R. However, the electronic levels E,,(R) shift in the process, but in the
zeroth approximation in the deformation there is no change in the level systematics.
Accordingly, states with various (n,/,m) are filled in the same order as at a constant
R. Instead of oscillations in the shape as a function of &, however, we should speak in
terms of oscillations in the shape as a function of R here.

The possibility of observing this uniquely quantum effect at temperatures at
which a metal is in a liquid state rests primarily on a large separation between degener-
ate levels in spherical particles, which reaches u/kr R, where p and k. are the energy
and Fermi momentum. At u~ 10 eV and kR ~ 10, this separation os 10°~10* K. The
situation looks even more favorable when we note that small metal particles can be
supercooled by an amount equal to 30-50% of the crystallization temperature.'

The fact that the surface energy of a spherical particle cannot be assumed to be
proportional to the surface area is reflected in the size oscillations of the Fermi energy.
A study of these oscillations is also of independent interest, since they are quite differ-
ent from the size oscillations in y in films (described in Ref. 2), because they are of a
quasistochastic nature. The reason for this nature is that the electron energy depends
on not one quantum number but on the pair of quantum numbers n, /. An analysis of
the order of the quantum levels in a spherical well shows that there is no obvious
regularity in the changes in n and / with increasing energy E,, at small values of this
energy.’ The same comment applies at large values of this energy. The role played by
two independent parameters in the onset of a quasichaotic behavior is also supported
by the established fact that this behavior is exhibited by the sum of two periodic
functions with incommensurate periods.

Calculations have been carried out for free electrons in an infinitely deep potential
well, with & =p,,/R, where p,, is the n-th root of the Bessel function J; ,, (x).
Using the general expression for p,,, we find, at /> 1,

P, ~ ™+ /2, n >1), (N
P, ~ L {14271 3mn/20)?" 3y (n<l). 2)
The oscillations in g follow from the independence of p,, from R. Specifically, as R is
increased, the value of p, ,  corresponding to 1 remains constant at 7' = O as the radius
changes by 6R = [ (I + 1)/27vR ?, where v is the electron density. The quantity

U= pfbnp/Zm*R % thus decreases by an amount Su ~uSR /R ~u(kpR) > (m* is the
effective mass of an electron) in this interval of R values.

With a further increase in R, the Fermi level increases abruptly, since a higher-
lying energy level begins to be filled. According to (1) and (2), states with n </ are
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filled preferentially, so the value of /. corresponding to g is kR in order of magni-
tude. The largest jump in g is reached when the (/, + 1,1) level is filled after the
({g,1) level. This jump which is on the order of u/k,R than the jump in g in a film.
At nonzero but quite low temperatures, the oscillations in u persist.

The Jahn-Teller deformation of the sphere, ¢, is found by minimizing the sum of
the energy of the highest electronic level containing electrons and of the surface ener-
gy, aS, where S is the surface area, and « is the surface tension, which is determined
by the ions and the electrons of the completely filled inner shells. It is natural to
assume that the deformation is uniaxial and that it occurs without a change in the
volume of the particle. The principal axes of the ellipsoid are then ¢ = R(1 + 2¢€) and
a =b = R(1 — €), and the increase in the surface area due to the deformation is

14
8s = _S_éso, So = 4mR 2. (3)

The change in the kinetic energy of electrons upon a deformation of this sort is given
in Ref. 3:
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If there are 2(2m, + 1) electrons in the upper shell, we find the following result from
(3) and (4):
50(1+1)(2mgy + 1u mo(mo +1)

= 1— . 5
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It can be seen from (5) that the deformation corresponds to a prolate ellipsoid of
revolution (e>0). With increasing radius, € decreases as my/S,~ 1/R according to
(5). With a = 60 erg/cm? (as for liquid cesium), R =50 A, p~5 €V, and v = 10?
cm 3, and if we have my=1p/V3, we find that ¢ reaches 10%.

Apparently the simplest way to observe a size-dependent deformation of small
particles would be by direct electron-microscopy method, whose accuracy would be
completely sufficient for this purpose according to our estimate of €. Experimentally, it
would be convenient to place a large number of small particles on a substrate which
they do not wet and which causes essentially no change in their shape.

A deformation of particles can also be observed by optical methods, e.g., by
measuring the anisotropy in the scattering of light by particles in a plasma or a liquid
in an external field F. If the field is parallel to the / axis, the dipole moment which it
induces, P,, is inversely proportional to the depolarization coefficient along this axis,
n® (Ref. 4). Along the long axis, n*” is at a minimum:

1

nl*) = plv) = _
3
Accordingly, the particles in the field tend to become oriented with their long axes
along the field. Since the difference between the energies of the configurations F||c and
Flcis on the order of eF?R *, at T~300 K and R ~ 100 A a field ~ 10° V/cm would be

6 1 12 :
1+ — (7 = _(1-=c¢). 6
(+5€), n 3( 5) (6)
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required for an approximately complete orientation.

Since the cross section for the scattering of light is proportional to P2, we con-
clude from (6) that the large number of oriented particles would scatter light which is
propagating along their major axis more strongly than it would light propagating
along their minor axis. The relative difference between the cross sections for scattering
at right angles in these two cases is 3¢/5; i.e., the anisotropy in the scattering is nearly
an order of magnitude greater than the anisotropy in the shape of the particles.
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