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A chirality transformation for massless one-particle states can be defined in a
consistent way for an arbitrary spin, as a translation along a closed contour in
momentum space.

The observation of a nontrivial topological phase in the adiabatic approxima-
tion,"* which usually originates from a crossing of energy levels at certain parameter
values, has stimulated research on the structure of a spectrum as a function of the
parameters in various physical problems. One of the clearest examples of a manifesta-
tion of a Berry topological phase is optical interference in a system of two helical
waveguides,>* in which the role of the parameter is played by the wave vector of a
photon, which traces out a closed contour in momentum space as the wave propagates.
It was demonstrated in Ref. 5 through an analysis of the structure of the Poincaré
group that the momentum-space motion of a massless neutral particle with a spin
occurs in the effective field of a monopole which has a unit magnetic charge and which
is at the point p = 0. We will show below that the presence of a monopole has the
consequence that the translation of the wave function of a particle of arbitrary spin
along a closed contour |p| = const in momentum space is equivalent to a chirality
transformation.

We consider a free, massless, spin-1/2 particle, whose dynamics is described by
the Dirac equation

—a_t“ =(QV)\I’, =YY ’ (1)

where ¥ (x,t) is a four-component wave function. Equation (1) has the one-particle
plane-wave solution ¥, (x,0) = u, (t)e'?*, where u, is the standard bispinor. As four
independent solutions with a fixed momentum we choose solutions characterized by
definite values of the energy £ = + |p| and of the chirality A = 4 1/2:
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where we have used the spinor representation of the Dirac matrices. We are thus
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dealing with a two-level system; each level is doubly degenerate in terms of chirality.
There is a crossing of levels at the point p = O; this event gives rise to a monopole at
this point, according to Ref. 5. As a closed contour is traced out in momentum space,
the solutions of the Schrédinger equation acquire a nondynamic phase, according to
Berry. This phase depends on the sign of the energy and the chirality:

u,, = u+AeiAn(p) , u_, ->u_>\e' ixe(p) \ (2)
where Q(p) is the solid angle which is traced out as the vector p is rotated. Expressed
in a different way, this point can be understood by recalling that the operator which
performs a pure rotation in momentum space is of the form

] A
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where A,, is the potential of the field of a monopole, and A plays the role of an electric
charge in momentum space.” We also note that a monopole will induce no transitions
in a degenerate level upon a change in chirality.® Expanding the wave function in
linearly independent solutions (2), we easily see that a translation of the wave func-
tion along a closed contour with a small value of Q(p) is of the form of a small chiral
transformation:
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As another example we consider a spin-1 particle. Maxwell’s equations can be
writen in the form

g
d (E+iB)_ sV 0)(5+i8> 4)
dt \ E—iB 0-sV/\E-iB
where the operator (s, ),; = — i€, ;; represents the spin of the photon. Equation (4)
has the form of Schrodinger equation, with conserved momentum. It is not difficult to
verify that the combinations E + /B and E — /B have fixed and opposite helicities.

Consequently, by analogy with the s = 1/2 case, during translation along a closed
contour in p space with a small } we have

G(Ep - in) = iS2(p) (Ep - in)

) (3
6(Ep + th) = _ zﬂ(p)(Ep+ th).

This result is equivalent to the standard dual transformation which is ordinarily taken

as the chirality transformation for the photon field. A corresponding analysis can be

carried out for higher spins.

The picture drawn here can be generalized to the case of second-quantized fields.
For example, for a massless fermion field a plane-wave expansion takes the form
V(x) =2,a,¥, (x), where a, are operators, and the summation is over plane waves
with positive and negative frequencies. Within the sum, we carry out a momentum
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transformation in which each vector p is rotated through a closed contour around an
axis. All of the vectors trace out the same solid angle. As a result, we have
SV (x) = (iQ(x)/2) sV (x) if we assume 2 to be small and to depend on the spatial
coordinate. Chiral transformations in a second-quantized theory can thus be identified
with local rotations in momentum space.

For massive particles there is no level crossing at real values of the momentum, so
a topological phase does not arise in this case. Accordingly, there are no nonremovable
topological singularities in the phase space of free massive particles. In a theory with
an interaction, the position of a possible point of a level crossing in p space is fixed by
the particular form of the external field; e.g., positive and negative levels of a fermion
in a magnetic field B cross in the p/B plane. A relationship between a chiral current
and the structure of the phase space was pointed out in Ref. 7 in a discussion of an
effect which occurs in He® and which is analogous to a chiral fermion anomaly. A
common definition of chirality for various spins may also prove useful in the interpre-
tation of the boson anomalies which have recently been discussed.
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