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The kinetic equations are solved in the absence of spectral diffusion. The solution
describes the propagation of nonequilibrium phonons with r~12/3,

This letter concerns the development of a phonon spectroscopy of paramagnetic
crystals based on methods for selectively detecting nonequilibrium phonons.

Let us assume that a crystal contains impurity two-level electronic centers with a
spectral density SN(w) of the difference between the populations (per unit volume) of
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the ground state (|1)) and the excited state (|2)). The Hamiltonian of the interaction
of a center with acoustic phonons can be written in the form #° = 3, V, (I')e, ('),
where the operators ¥, (I') are defined in the space of states of the center, and the
quantities e, (I') are linear combinations of the components of the dynamic strain
tensor e,g, which transform in accordance with a row A of an irreducible representa-
tion I of the point symmetry group of the center. The lifetime of a phonon with a
wave vector q and a frequency o; (q) (J specifies the branch of the vibrational spec-
trum), which is determined by the resonant absorption by electronic centers, is Ty
= (6N°(@;(q))W;(q)) "', where SN ° is the equilibrium spectral density of the popu-
lation difference, and

W@ = = ——1—(-"—)—|<1:V O 1 f . @lq)
A Rpul

Here p is the density of the crystal, v, is the phonon velocity, and fLp is the square of
a bilinear form of the direction cosmes of the polarization vector and the wave vector
of the phonon. In the case of a low phase-relaxation rate, and with a highly nonuni-
form broadening of the electronic transition (the linewidth satisfies Aa)>>'rj;1 if the
concentration of scattering centers is sufficiently low), the linearized kinetic equations
for the deviations of the phonon occupation numbers An;, = n,, — nj, and the spectral
density of the excitations of centers, AN(w) = N°(w) — SN(w), from the corre-
sponding equilibrium values are'

9 An, _ _ (1(w)) AN(W)
3AN ’q A
BV |1 Av) + 22§ 5w - wi@) 2Ha | 2)
dt T @) / T

where p, = 2, f[d 39/(2m)*)16(0 — w;(q) is the density of lattice states per unit vol-
ume per unit frequency interval, 7 is the lifetime of an electronic excitation, and
{7(®)) is the expectation value of the lifetime of the phonons with a frequency o,
given by

1 Ly, & d3q 1
—~ -
T ) 'r,-.l
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At times > 7, at which the phonon subsystem reaches a state of equilibrium
with the electronic subsystem, the spatial Fourier transforms of the variables
An, (r,2), AN(w,r,t) are related by the following equation, according to Eq. (1):

"y v , (r(w)) AN (w,k,t)
njq(k,t} (1+t'rjq Vig)~ - 20n

(3)

The total number of excitations with a spectral density (per unit volume)
J(w) =1AN(w) + Ejf[d3q/(277)3]6(w — w,;{q))An;, remains constant. Substitution
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of expression (3) into the conservation law in differential form yields a transport
equation (in the limit k—0; the flux density of excitations is determined by the drift of
phonons):

dAN (w, k,t) ¢+ T — ) ' AK) AN (w,k,t) = 0, (4)
where
a‘ysq l(k-v, )?
i ¥ Ve )
A(k) (21()3 ( j(q‘)) ‘r"2 + (k q)z ' ®

The behavior of A(k) in the limit k—0 (the length scale of interest here is

L~1/k>v,7;,) depends strongly on the form of 7, as a function of the direction of
the phonon wave vector. Depending on the symmetry of the lattice and the scattering
center and also on the nature of the transition, the function f% (q/g) (see the discus-
sion above) (a) may be constant, (b) may vanish on a line, or (c) may vanish at
individual points on a sphere centered at the origin of coordinates in ¢ space. Only in
the first of these cases (7; '>0) does the asymptotic expansion of 4(k) begin with a
quadratic form of the components of the vector k, corresponding to a diffusive regime
of the propagation of the nonequilibrium phonons."? In case ¢ the leading term of the
expansion 4 (k) is proportional to k “Ink. The transport process® has its fastest propa-
gation regime (‘“nonlocal”) in the most general case, b, in which the expansion of
A(k) is represented by a power series in k ~'/2, and the leading term of the series is
Ak) ~F(0,.¢, )k 312 where k, 6,,, and @ are the spherical coordinates of the vector
k. As an example, we write the explicit expression for the function F(8, @, ) for the
resonant scattering of longitudinal phonons (considered in the approximation of an
isotropic medium) on a singlet-doublet transition of non-Kramers paramagnetic ions
in a crystal field of tetragonal symmetry (transitions are induced by the strains e,, and
e,,; z is the symmetry axis):

(I'(1/4))*

Ak) ~ 6\/_—-.|

l3/2 (v,k)3/2 (T(w))llz A

The length scale of the spatial distribution of nonequilibrium phonons increases over
time in accordance with z2/3, instead of the ¢ /2 law in the case of ordinary diffusion.
The time scale of the process is proportional to the square root of the concentration of
scattering centers, while in the case of diffusion there would be a direct proportional-
ity. It may be that the effects which stem from an anisotropy of resonant scattering
determine those features of the propagation of nonequilibrinm phonons and of the
luminescence kinetics in ruby and alexandrite active media as functions of the concen-
tration of excited chromium ions which were reported in Refs. 4 and 5.
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