Nonlinear quantum conductance of a point contact
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Anincrease in the extraction voltage Vis shown to round the quantum stepsin a
plot of the current through a point contact [ B. J. van Wees et al., Phys. Rev. Lett.
60, 848 (1988); D. A. Wharam et al., J. Phys. C. 21,1209 (1988) ] versus the
diameter of the constriction. The number of steps on this plot becomes bounded:

n < 2E./eV. Additional steps, equal to half-integer values of the quantum ¢*/277h,
appear in the differential conductance.

Recent experiments by van Wees et al.' and Wharam er al.? have revealed a
quantization of the conductance G of a ballistic point contact in a two-dimensional
electron system. Well-defined plateaus were observed in the plot og G versus the
constriction diameter” d at integer values of (7#/e*)G. A theory for this phenome-
non’ relates the appearance of the plateaus to an adiabatic passage of an electron wave
across the point contact. The adiabatic nature of the passage stems from the smooth-
ness of the constriction and implies that there can be an effective separation of the
variables which are longitudinal and transverse with respect to the channel axis. The
index of the transverse-quantization mode, n, is an adiabatic invariant, and the corre-
sponding energy E, (x) depends on the coordinate (x) along the channel axis. It
appears as an effective potential in a one-dimensional Schrodinger equation describing
the longitudinal motion of an electron. Those modes for which the maximum value of
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the potential E, (0) is below the Fermi energy contribute to the conductance. The
extraction voltage applied to the contact, ¥, determines the band of energies e/ near
the Fermi level in which the electrons contribute to the current.

The nonlinearity in a ballistic conductance is usually determined by the small
parameter eV /E.. A specific feature of a situation in which the value of d can be
controlled is that as some channel # comes into play, the band of energies £, — E,(0)
of the “current” states may be comparable to eV, even under the condition eV /E, 1.
This circumstance is responsible for the pronounced nonlinearity near the constric-
tion, which separates neighboring plateaus on the plot of G(d).

In the present letter we show that at a finite voltage V' the sharp steps (sharp in
the limit ¥—-0) on the current plot 7(d) become broader. The broadening increases
linearly with the step index #, and at n > 2E/eV the plateaus disappear from the plot
of I(d). On the plot of the differential conductance G = dI /dV versus d, the integer
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plateaus are accompanied by some other plateaus, which lie between the integer pla-
teaus (Figs. 1 and 2). The width of these additional plateaus increases with increasing
eV and with increasing index n. For all of the additional plateaus (except for the first
few) the values of (7/e*)G are approximately half-integers.

In the limit ¥ -0, a given mode comes into play in the conductance as the quanti-
ty Er — E, (0) varies over the energy interval A, = n#*/m(2Rd>)'/?, where R is the
radius of curvature of the constriction.? Let us find the component of the current from
one mode for an arbitrary relation between eV and A,. Assuming eV /Ep <1 and
T<A,, eV, and using the known formula* for the coefficient for transmission through
a parabolic barrier, we find

~ eV
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It can be seen from (1) that under the condition e¥’> A, a given mode comes into play
in the interval |E, — E,(0)| <eV /2, and over essentlally this entire interval the quan-
tity 81, is proportional to E, + eV /2 — E, (0). The current through the constriction
is determined by the sum of partial currents (1) of the individual modes, and at
eV> A, we have
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In place of the constriction diameter d here we have introduced the dimensionless
variable z = kpd /7. The square brackets in (2) mean the greatest integer. The poten-
tial @, = (E (0) — E,(0))/e determines the difference between the energy E 0)
and the value® E, (0) = #*7°n>/2md ?, which arises because of the finite voltage V'
applied to the channel.

From (2) we easily see tht the nth plateau on the plot of I(z) corresponds to an
interval of z values for which we have n, = n, = n. The region of the nth step [which
is the transition from the (# — 1)th to the nth plateau] corresponds to those values of
z for which we have n, = 1, + 1 = n. The width of a step, 6z,,, increases with its index:
8z, = (eV /2Eg)n. The middle of the nth step coincides with an integer value z = n
within a small quantity”? ~eV /Ey. The picture drawn here holds for z< 7 = [2Ez/
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eV], (Fig. 1). As z increases, the /(z) dependence approaches a linear dependence

)= = ) 3)
(o= -2 (

There are no plateaus at z> 7, and the deviations from (3) do not exceed ~ (eV/
E;)(e’V /m#) in magnitude. These deviations are described by a broken line with a
typical change 6z~ 1. Note the term — 1/2 in (3): It corresponds to the first quantum
correction to the classical Sharvin formula.

The discussion above shows that not all of the states in the band of energies eV’
contribute equally to the current at values of z which are approximately integers. This
circumstance is manifested in the unusual z dependence of the difference conductance,
G(z) = dI(z)/dV. In differentiating (2) with respect to the voltage, we should allow
for the implicit V' dependence of ¢, and d. The V' dependence of ¢, is determined by
the particular distribution of the applied voltage along the channel. The d( V) depend-
ence stems from the electrostatic method by which the constriction is formed. It is
caused by the repulsion of electrons out of the region under the gate. For definiteness,
we assume that the electrostatic potential on the gate is zero. Correspondingly, the
potentials on the left and right banks of the constriction are V; — V/2and Vg + V /2.
We will show below that the implicity ¥ dependence of ¢, and d can be ignored in the
region of greatest interest, 1 €z S n, and the additional steps in the conductance (Fig.
2) correspond to half-integer values of the quantum:

Gz = m- Ly, zemgnL 4)
2} = —n- — s Z~-njsn—m—mm ,
T(h( 2 . 4EF

At small indices n, there are again some additional plateaus, but the corresponding
values of G may be different from half-integers.

In analyzing the question of the potential distribution along the channel, we
should first note that in a two-dimensional electron gas the electric field of the charge
is screened over distances on the order of the first Bohr radius az (Ref. 5). As in the
theory of classical point contacts,® we can thus make use of the condition of electrical
neutrality. The deviation of @, from zero in this case stems from the difference be-
tween the probabilities (W _ and W_ ) that electrons will arrive from the left and right
banks at the point of greatest narrowing. It is easy to see that we have
Qo~V(W,_ — W_)/(W, + W_). In the region z% 7 we have a ratio (W, — W_)/
(W, _W_)~1/z, since for a semiclassical barrier these probabilities differ for only a
single mode (that which has come into play). Near the nth step we thus have ¢,/
V~1/n, and the contribution to G from the differentiation of ¢, is small.

We would like to call attention to the effect of ¥ on the value of d. We note at the
outset that for a constriction of symmetric geometry we would have dd /dV « eV /E,
and the corresponding contribution to G could be ignored. For an arbitrary geometry
of the constriction we would have dd /dV = dd /dV;. Determining the ¥; dependence
of the position of the boundaries of the constriction requires solving a nonlinear two-
dimensional screening problem. We will be content with simply a parametric estimate
of the value of dd /dV s, assuming that the width of the lithographic gap in the gate'-?
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is equal to D. For the discussion below, the ratio @z /D is an important small param-
eter. This parameter makes it possible to use a procedure of successive approximations
to solve a self-consistent equation® in the two-dimensional case and to derive the
estimate @ V' ~a, Vi /(D — d) for the variations of the electric potential in the plane.
A boundary of the two-dimensional gas evidently corresponds to the value ep ¥ = E.
We thus find
eV
D-d ~ —Ffa,. (3)
EF
From (2) and (5) we can find an estimate of the contribution of the dependence d( V)
to the value of the conductance. In units of the quantum, this contribution does not
exceed agky/n. For the heterostructures used in Refs. 1 and 2 we would have
agky ~1, and at large values of » the estimated contribution would be insignificant.
Consequently, relation (4) holds for most of the additional plateaus.

We wish to thank 1. B. Levinson and R. 1. Shekhter for useful discussions.

"The diameter is controlled by the gate voltage V.
ZThis assertion is based on the inequality ¢, < ¥ /n, which we will derive below.
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