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Quasiparticles of a new type—toroidal excitons, characterized by a nonzero
toroidal moment—mmay exist in solids. Their wave function is calculated in the
effective-mass approximation.

1. Exciton states can be classified on the basis of how they behave under transfor-
mations of the group of spatial and temporal inversions. It is believed' that the wave
function of an exciton in a nonmagnetic, centrally symmetric crystal should be either
invariant under these transformations or should change sign under space inversion or
time reversal. In the last two cases, the exciton can have an electric or magnetic,
respectively, dipole moment. On the other hand, we know? that in addition to the
electric and magnetic families, there is a third, and independent, family of electromag-
netic multipoles: the toroidal family. We will show in this letter that a bound state of
an electron and a hole having a toroidal moment—a toroidal exciton—corresponds to
this family. The wave function of this state changes sign under both space inversion
and time reversal.

We write the Hamiltonian of the system of electrons and holes in the form
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where a,,, b, are Fermi operators which annihilate an electron in the conduction band
and a hole in the valence band. The dispersion law for the quasiparticles is &;(p)
= &,(p) =p’/2m* + E,_ /2 where m* is the effective mass, and E, is the band gap of
the crystal. In addition to the direct Coulomb interaction V,(p) = 4we?/xp® (e is the
charge of an electron, and « is the dielectric constant), Hamiltonian (1) incorporates
the exchange coupling ¥} (p) and the interband transitions of electrons and holes,
V,(p). Everywhere below we set = 1.

The spectrum of excitons is determined by the poles of the two-particle Green’s
function K (p,p’,Q), where @ = {Q,Q} are the resultant quasimomentum and resultant
energy, and p = {p,w} and p’ = {p’,0’} are the relative quasimomenta and energies of
the electron and the hole. Since the Hamiltonian contains a term which stems from
interband transitions, we need to consider, in addition to K(p,p’,Q), the function
K(p,p',Q), which describes the creation of two electron-hole pairs with a zero resul-
tant quasimomentum.® A system of equations for these functions can be represented
graphically by the diagrams shown in Fig. 1. A circle in a diagram means the sum of
the irreducible diagrams of the given type. Here we have 2 (p,Q) = V,(p) — 2V 5(Q),
and 3 (p,Q) incorporates interband transitions.

The system of equations is solved with the help of the Green’s function of the
Coulomb problem.* Near the lowest pole we have

QQ) = Q*/2M + E, - Ey + 2V(Q) £ V1(Q), (2)

where M = 2m*, E, = me*/2«* is the binding energy of an exciton if only the V,(p)
coupling is taken into account, and m = m*/2 is the reduced mass of the electron and
the pole. In this case we have the relation

K(p,p,Q) =t Kinp.0). (3)
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FIG. 1.

>
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The fact that the two-particle Green’s function has two types of poles indicates
that there are two types of singlet bound states of the electron and hole (we are
ignoring the spin degree of freedom).

2. A solution of (2) has been derived ignoring the dependence of i(p,Q) on
K(p,p',Q); this simplification corresponds to the mean-field approximation. We calcu-
late the exciton wave functions by taking this dependence into account. We write the
wave function in the form

q)(PaQ) = ¢(paQ)a;+Q/2b_+p+Q/2 q)o s €))]

where @, is the wave function of the ground state of the crystal. Applying Hamilto-
nian (1) to (4), and taking an expectation value over the internal motion, we find, for
the envelope

d’p

4@ = [4EP.Q

(3)

[#,(p) is the eigenfunction of the lowest state for the Coulomb problem ], the equation
[Q -~ Q'2M-E, + E, -2V, (Q]HQ) * V:(Q.1¢(Q) | 2¢(Q) = 0, (6)

where the plus sign corresponds to the case in which the function ¢(Q) is real, and the
minus sign corresponds to the case in which it is purely imaginary.

Equation (6) is of the form of a nonlinear Schrodinger equation describing a
system with a variable number of particles. In the one-dimensional case, this equation
has soliton solutions, which oscillate in space and time. In the coordinate representa-
tion we have’

1 1
1@, 1)| = ?(Mg)"’exp[i/Qx - m)]/cosh[?Mg(x— Qt/M)1, (7)
Q= Q%M +E, - Ey~ (Mg*[8)

for an attractive point interaction V,(Q)=g.

3. In summary, incorporating the interband transitions of electrons and holes
leads, by virtue of the ¥,(Q) coupling, to a lifting of the phase degeneracy of the wave
function, i.e., the degeneracy of the exciton states under time reversal. Since in this
case we have V,(Q) #0 only for the states of the conduction band and valence band
which differ in parity, the degeneracy under space inversion is lifted simultaneously.

Evaluating the diagonal matrix elements of the toroidal-moment operator
A =i

= TN—2s2 T
T 20m*c[(r(rV)) 2r'v 1, (8)

where c is the velocity of light, with functions (4), we verify that the density of the
toroidal moment is nonzero for states characterized by a purely imaginary and spatlal-
ly antisymmetric wave function.
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The selection rules for transitions to toroidal exciton states are quite different
from those for transitions to exciton states of a different symmetry, so there is a good
opportunity for an experimental observation and identification of toroidal excitons in
crystals.
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