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Nonlinear pairing of light and dark optical solitons is shown to be possible as a
result of phase cross-modulation of the waves in a nonlinear dispersive medium.
On this basis fundamentally new methods can be developed for a nonlinear
stabilization of high-power wave packets in the region of positive and negative
dispersion of the group velocities of the interacting waves.

The idea that bound states can be produced by particle pairs—pairing—is one of
the fundamental ideas of modern physics. The extension of this idea to nonlinear
optics leads, as we will show in this letter, to the theoretical prediction that new
“quasiparticles” are produced as a result of nonlinear pairing of optical solitons of
various wavelengths (“colors”). The pairing of light and dark optical solitons which
we are considering here raises a fundamentally new possibility of nonlinear stabiliza-
tion of intense supershort light pulses and production of optical solitons in the region
of positive and negative dispersion of group velocities as a result of phase cross-modu-
lation of the interacting waves.'?

The nonresonant self-effect of N waves in a nonlinear cubic dispersive medium is
described by a system of Schrédinger equations for the complex amplitudes of inter-
acting waves:
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This system, in which standard notation is used, describes the following physical pro-
cesses: the competition between dispersion effects and nonlinear effects—the self-effect
of waves and the “reactive” interaction (without energy transfer) of waves due to the
phase cross-modulation. The phase cross-modulation causes the self-effect of the wave
packets to change qualitatively; in particular, it causes the formation of bound states of
optical solitons with different wavelengths—soliton pairing. The principal physical
mechanisms for nonlinear soliton pairing can be illustrated, on the basis of model (1),
by using the example of the interaction of two waves:

la\Il,/az = 1/232\1’1/87'2 +R11 ‘\Ill P‘I’l +R12 |‘I’2 F‘I’l , (2)
l(a\l/z/az +Vb‘l'2/81)= ]/282\1’2/61'2 +Rl2 N’) P\IJ2 +R22 |\I/2 |2\112. (3)
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Equations (2) and (3) are written in the associated coordinate system in standard
dimensionless variables: ¥, = E,/E,;; 7= (¢ — 2/v)/7o;; z=2/24, Where z, is the
length of the dispersive spreading of pulses, and R;; are the nonlinearity parameters. In

the absence of a phase cross-modulation (R; =0,) Egs. (2) and (3) degenerate to a
nonlinear Schrédinger equation, whose partial#éolutions are the light solitons—parti-
cles (R;>0) and dark solitons—holes (R; <0): ¥/ (z,7) = «/R,, sech(xr)
exp( — ik’z/2); ¥, (z,7) = k/\|Ry|, tanh («x7)exp(ix’z). Equations (2) and (3)
contain the first integral which expresses the law of conservation of the total number
of soliton-particles and soliton-holes §|W," |’d7 + (¥, |> — |¥; (z= + «)|})dT
= N " + N, . The Hamiltonian of the system of interacting solitons can, on the basis
of model (2), (3) for R,, = R,,, be written as follows: H = H,, + Hy, + H,,,, where
H,=§(|¥,. |’ — R;|¥,|*)dr is the Hamiltonian of “free” solitons in the absence of
interaction, and the Hamiltonian of the pairwise interaction of solitons, H,,,, can be
written in the form: H,,, = fW*W#R ,¥ W, where R, is useful to treat as the interac-
tion energy of a soliton pair. The condition R, = R,, means that the bound states of
different colors in a system of interacting waves, (1)—(3), appear and disappear in
pairs.

The system of equations (2) and (3) has the following soliton solutions: 1)
paired light solitons (all R 5 >0) and paired dark solitons (all R; <0) situated in the
parametric region R\, =1 — R, and R,; =1 — R,, for 0 < |R;| < 1. Solutions such as
“light 4 light” soliton were obtained for the first time by Manakov?; 2) paired light
and dark solitons without an inversion of wavelengths (colors). In the absence of
interaction (R,, = R,, = 0) the light solitons (R,,>0) and dark solitons (R,, <0)
are the true solitons of the nonlinear-Schrédinger-equation model. An exact solution

of (2) and (3) for R;#0, R ; >0, and R,; <0 is a quasiparticle comprised of paired
i#=j
light and dark solitons:

\Iﬁi@’ T):sech.re" l(l/2+|R‘2|)z, ‘pae’ 1.)= tanh Teilele . (4)

This solution applies to the region of the parameters R\, = R,; — 1; |R,;| = |Ry| — 1.
Since R |, > 0, we see that these conditions determine only the relationship between the
parameters R, but do not impose any constraints on the limits of their variation. Since
the parameters R = N ? are related to the number of solitons of the same color in each
pulse, the dark multisoliton pulse in this system stabilizes nonlinearly the light multi-
soliton pulse (Fig. 1). The physical explanation of the wave packet stabilization con-
sists in transposing the frequency modulation of one wave to another, so that the
positive frequency chirp in the light pulse is exactly cancelled by the negative frequen-
cy chirp in the dark pulse. Using the space-time analogy, this effect can be viewed as a
mutual self-focusing of beams at different wavelengths. A beam with a lower intensity
at the axis is a nonlinear lens extending across the medium, in which a waveguide
propagation of the second beam occurs at a power level many times greater than the
critical power level of the self-focusing. This situation closely resembles Askar’yan’s*
“banana self-focusing”; 3) light and dark paired solitons with a color inversion. Let us
invert the wavelengths of the interacting solitons; i.e., let us determine whether light
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FIG. 1. (a) Dynamics of the bound state N * = 3 (R,, = 9) of light Schrédinger solitons in the absence of
interaction with the dark solitons. (b) Nonlinear stabilization of a multisoliton pulse in the bound state with
a dark soliton (noninverted case 2) R, =(N/)'=9; R,=8 R,,=-9 R, =—28.
¥ " (z=0,7) = sechr.

solitons with R; <0 can exist in the bound state with a dark soliton with R;; > 0. In the
absence of interaction such states theoretically cannot occur. Soliton pairing in the
phase cross-modulation of the waves makes it possible to obtain such a non-trivial
solution of (2) and (3)—optical “superfluidity” effect:

V1@ 1)=sechre1/2= Ry D20 44z 1) = tanh 7e~ FR12 12 (5)

The conditions under which solutions (5) hold are: |R,,|=|R;;]+1 and
|R,,| = |Rp|+ 1. As in case 2), these conditions do not impose any constraints on the
limits of variation of the parameters R, and R,,, which are related to the number of
solitons in the pulses R, = N 2. The fact that a soliton-like solution is obtained in the
region of positive dispersion (R,,,R,, <0) is illustrated in Fig. 2 by the results of a
numerical solution of Eqgs. (2) and (3). Since the parameter R; = 1 corresponds to a
one-soliton solution of the nonlinear Schrédinger equation, a transition from the non-
inverted case 2) to the inverted case 3) occurs each time a quantity AR = 2, which is
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FIG. 2. (a) Dynamics of the self-effect of the temporal envelope of the wave packet in the region of positive
dispersion of the group velocities (R; <0) in the absence of interaction with the dark solitons, calculated on
the basis of the nonlinear-Schrodinger-equation model for R,, = — 9; (b) formation of the bound state of a
light soliton in the region of negative dispersion of the group velocity (inverted case 3) R, = —9;

Ri,= —10; Ry =10; Ry, =9. ¥, (z=0,7) =sechr; ¥,' (z=0,7) = tanhrexp( — 7*/10); R= N7,
where N is the number of solitons per pulse.

equal to the energy of two solitons, is added to the “binding energy” R ,. The fact that
light solitons can exist in the region d *k /dw* >0, in the case of phase cross-modulation
of waves and tanh modulation of the fundamental wave was pointed out in Refs. 5 and
6. In the numerical experiments we studied the effect on the bound state of the solitons
of the dispersive spreading of the carrier pulse with R ,; <0 (see Refs. 7 and 8), of the
development of a modulational instability in it at R, >0, of the role of a temporal
mismatch of the light and dark solitons, and of the mismatching of the group veloc-
ities. The stability of the solutions obtained by us to the temporal mismatching A is
determined by the nature of  the soliton interaction H,,
= §|W, 2R ,|W,|?dT = 4, + A,A + A,A% at low values of A. It can easily be shown
that 4, = 0 and that the nature of the interaction (attraction of repulsion) is governed
by 4,. A calculation shows that solutions 1) and 3) coprrespond to attraction and
solution 2) corresponds to repulsion.

The inverted case 3) is especially attractive when a nonlinear pairing of optical
solitons is achieved experimentally, since in this case both the relation R,,; =2 with
R,, = 1, which is characteristic for single-mode optical waveguides, and the stability
against transient pulse mismatching can be achieved (Fig. 3). At Aok /
dw* = 0) = 1.31 um a soliton propagation regime of a pulse at the wavelength of 1.06
um of the same length and intensity can be achieved by changing the conditions of the
pioneering experiment® on the observation of light solitons in lightguides, i.e., by form-
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FIG. 3. Stability of the bound state of

/?([\ the light soliton and the dark soliton
with a color inversion (case 3) against

/m\ a temporal mismatch of the envelopes.
g5 Rin= -1 Rpnp= -2 Ru=1

R, =2, ¥ (z=0,7) =sech (7 + A);

ﬁ_\ A=0.5; V,' (z=0,7) = tanhrexp

ing a dark soliton at the wavelength 4 = 1.56 um, whose duration would be 7= 7 ps
and whose intensity of the carrier pulse would be 7 = 1.2 W. In multimode lightguides
soliton pairing is governed by conditions (4) and (5).

In summary, nonlinear optical soliton pairing in the phase cross-modulation of
waves raises the possibility of developing fundamentally new methods of nonlinear
stabilization of high-power wave packets.

After this paper had been prepared for publication a paper by S. Trillo, S. Wab-
nitz, E. M. Wright, and G. 1. Stegeman, in which they obtained solution (5), was
published in the October 1988 issue of Optics Letters.
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