The Josephson effect in granular superconductors
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The present model of a granular superconductor with a scatter of the critical
currents, 1, is described by equations like those that are used for a Josephson
junction. The I-V characteristics are obtained, with allowance for 61,.. The
Shapiro steps are found to be present in a large strip, but one of finite width, and
magnetooscillations are found to occur in an infinite strip.

It has been established that a high-T, superconducting ceramic is a granular
system with Josephson junctions between the grains (see, e.g., Ref. 1). Ceramics are
known to exhibit Josephson effects, i.e., a coherent response to the application of the
magnetic field H and an alternating signal. Both effects have been observed when the
junction size is much greater than not only & and A but also the grain size (see, e.g.,
Refs. 2-4). Some investigators have assumed that one or more junctions might oper-
ate. Such an assumption is plausible only near 7., where the fluctuations suppress the
superconductivity in the Josephson junctions and the percolation effects are apprecia-
ble. Far from T, where these effects have actually been observed, the current flows
through many Josephson junctions and the validity of this assumption is questionable.

In the present letter we consider a model of a granular superconductor with
Josephson junctions with various critical currents /.. The system which we are consid-
ering is described by the same equations as those used for inhomogeneous Josephson
tunnel junctions. Typical size of a junction, in which coherent effects can be observed,
may be, as will be shown below, quite large. We will also determine the current-voltage
characteristic, with allowance for the scatter in 7.

Let us assume that grains form a square lattice with Josephson junctions situated
at the points at which the grains come in contact. As usual, we represent the phase of
the grain as y(r,) = y(r;) — (27/®,) ; dr'A(r’), where r, is the coordinate of the
grain center. Let us consider two types of contours with circulating currents 7, and 7,
(Fig. 1). The currents I, are related to the currents flowing through the Josephson
junctions, I,, each of which is characterized by the phase difference @(r;)
=y(r; + a) — y(r;), where a=a,, a = (x,p) (Fig. 1). Analyzing the continuum
limit, where @(r) remains essentially constant on the dimension ~a, we find

curl I, =1,, (1

where I, = (0,0.1)), L, =1 [ (CH/2el.)d %@, + 70,9, + sing, |, 7. ' =2el R /#,
and @, = a[V ,x —274,/Py]; P, is a fluxoid. We integrate the expression for the
current density in each grain j, =B [V ,x — 274,/®,] over the contours 1 and 2,
assuming, for simplicity, that @> A (such an approach, which is used in the analysis of
SQUIDs, was applied to granular systems in Refs. 5). For a magnetic flux through
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FIG. 1. Model of a granular superconductor. The dashed lines
represent the contours of integration.

contour 1 we have

.= {ex) o , )
O =HS=® " + LIy =S dr (L, 1, )10yt Laabr, — 1) ]2 ) (2)
Here H’ = curl 4, ®{*® is the external magnetic field flux, L, is the self-inductance,
and L ,(,, are the coefficients of mutual inductance of contours 1 and 1(2).

If H® is smaller than H,, for a given grain, the flux in contour 2 is zero:
®, =L,I, -5 FA%r (Lo, =1 () ¥ Los(Fy ~r )y (r, )= 0. (3)

If the transverse dimensions of a system, /, ,, are much larger than the longitudinal
dimension (in H), /,, retention of the flux leads to a coupling between L,,, and
Len:

Lyy= 871 [d%r [L11(22)(,) * L21 (12)(r )] (4)

Equations (1)-(4) describe this system.

Let us consider, for example, a lattice vortex for a simple case in which L,, and
L, in Eq. (2) can be ignored relative to L,. Far from the vortex center we can then
write the standard equation for the Fourier components A(q)

Usa® + 1) A lq) =iq,(x/2m)®,, (5

where a typical vortex, I, = (S®o/27L,1,)"*~ (®yc/j,a)’?, may be quite large>S;
specifically, it may be larger than the grain size a (for j, ~10* A/cm? and a~ 1 um we
have I,~10 um). If /, I, ,, we must take the coefficients L ,(,,, and Eq (4) into
account. We will then obtain Eq. (5), in which /34? should be replaced by /24*/F(q),
where the function F(q) ~c,gl, when g</ ', and ¢, ~ 1. The decay of H from the
vortex center in this case obeys the power law.

Let us analyze the Josephson effects. We will first consider a simple case, /,
>1.,. The critical current is I (r,)=1I[1+/(r,)], where (f(r,)f(r.))
=Sf38(r, —r,),and f3 = (AI2)/I%. We will ignore the fluctuations of other quan-
tities (such as R) (this is completely justifiable in the case of SNS-type Josephs#"n
junctions). For the phase difference ¢ = 27ad, /®, we then find
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18V - 1,010 =(1+f)sing. (6)

With the boundary conditions for a band of width /, (the current flows along the y
axis) we have

(@0/0X)s=x 1y 12) = (B * 4l fcl;)(2ma/ o). €

Here we have ignored the capacitive current which causes plasma vibrations, assuming
the frequencies to be not particularly large, @RC < 1. Equation (6) also describes the
inhomogeneous Josephson tunnel junction or a commensurate charge density wave
which interacts with the impurities.” If the fluctuations are small ( f,<1), then the
fluctuations @ will also be small in the static case.” In the dynamic case (I>1,),
however, arbitrarily small fluctuations f cause the Shapiro steps, Alg, to disappear if
the system is sufficiently large.

Let us determine the I-V characteristic and Al under the assumption that /. €/,
and that the current is large: I> 1. In the absence of H the solution of (6) can be
2
sought in the form ¢@=wt+0(r,) + ¥(r,t)+1(2) 21x =
c*0

= I + I sin(wt), the function ¢(r,, t) is small (< 1) and oscillates with time, and
the function @(r, ) is comprised of a smoothly varying part, ,(r, ) ® 1, and a small
part, 8,<1, which varies markedly over the lengths </, (I./I)'/?. We substitute
@(r,,t) in (6) and expand sin @ in a series in powers of ¥, x*, and 8, to the first order
in ¢ and to the zeroth order in x*~!2 and 6,. Having found 1, we can determine the
I-V characteristic for I>1..

where I(1)

w81 nf¢S/13
s/, =1/I, ~ +Qwr) N1=(2/2) ¢ = (8)
fle =Hle = [rew+ 2uore) 1= (5 /) Z (Wre)* +(@lo)* 22w,

The frequency o is a consequence of the voltage on a segment of length /,: 2eV
= #iwl,/a = #iwN, where N is the number of grains along a segment of length /,. The
right side of (8) gives the correction to the I-V characteristic due to the scatter of 7,
and at large values of the current determines the manner in which the I-V char-
acteristic approaches the resistance curve. For 6,(¢) we have 6,(g)
= — (o7, f(9)/(2¢")) ((w7.)? + 13¢*) " '; i.e., in the case of small values of ¢ the
quantity 0, diverges, causing Al to be suppressed. For a Shapiro step we find

Als/l, =(ly,/T¥cos 81) = (/D) exp [~ (0% 1(7a) )21 ~ exp[~ (fo/l0)*SUy/10)* (1./D)?].

If the bridge is long [/, > 13 =15 /1.)*/( f$5),] for example, Al is small.

In the case of samples with /,_, >/, (films, for example) the results remain qual-
itatively the same but change quantitatively, since the #,(q) and #(q) dependences
change because of the appearance of the function F(g) in (6) [see the discussion of
Eq. (5)]. In particular, the fluctuation-related change in the I-V characteristic is
described by 81/1, = fiw(l,/1,) sgn V, rather than by (7); i.e., an excess current
which does not depend on |V | and which is caused by the I, fluctuations, rather than
b the Andreev reflection,® is produced. The criterion for coherence also changes: Al
is not small if /, < Iy = I,({/1,)*(Lo/1,)*(Sf¢/13) "
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In the presence of a field H a similar procedure may be used to determine the I-V
characteristic. It turns out, however, that the role of fluctuations changes. If we once
again assume that /, </, the oscillations of the I-V characteristic 61 /I, = (I./2])
(cos ®)/P? (where @ = 27 HI,a/®, and I's I, ) will occur regardless of the length /,
of the bridge. Accordingly, a bridge in a high-T, superconductor may exhibit magne-
tooscillations® if [, is not particularly large (I, S1,) and /, is of arbitrary size. The
Shapiro steps, on the other hand, are seen only in a bridge of finite length, /, </s.
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