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It is shown explicitly that, despite the existence of logarithmic divergences in the
perturbation theory, a one-dimensional antiferromagnet with S = 1/2is
equivalent at large scales to a system of free bosons.

1. One of the most interesting phenomena which has been studied in magnetism
in recent years is the fundamental dependence of the behavior of one-dimensional
Heisenberg antiferromagnets on the parity of the doubled spin. This dependence was
originally predicted by Haldane.' According to Haldane’s hypothesis, antiferromag-
nets with integer values of .S remain in a paramagnetic state even at absolute zero,
while for antiferromagnets with half-integer values of S the point 7'= 0 serves as a
critical point, and at it we have a quantum-mechanical analog of a (Berezinskii-)
Kosterlitz-Thouless phase. Haldane’s hypothesis has now been verified both by the
results of numerical simulations? and by measurements of the magnetic characteristics
of the quasi-one-dimensional compound Ni(C,HN,),NO,(CIO,) (§= 1).? On the
theoretical side, most of the work has invoked the analogy with field theory. At the
semiclassical (5> 1) level, for example, it has been established* that a 1D Heisenberg
antiferromagnet is equivalent to the O(3) o model with an additional topological 6-
term with a coefficient 8 = 27S. For integer values of S we have 8 = O(mod 27); the
topological term is not important; and, as we know from the exact solution,® quantum
fluctuations lead in the ¢ model to a dynamic generation of mass (i.e., to a gap in the
spectrum of excitations). At half-integer values of S[# = 7(mod 27) ], the o model
has a critical point; i.e., the growth of fluctuations comes to a halt, and there is a
critical behavior, characteristic of a Kosterlitz-Thouless phase.

2. In this letter we will attempt to explain the difference in the properties of 1D
antiferromagnets with integer and half-integer values of S, without appealing to the
analogy with the -model. Specifically, we will discuss an .S'= 1/2 antiferromagnet.
The basic idea of our approach is to explicitly incorporate in the one-particle formal-
ism the difference between the order parameter in an antiferromagnet and a unit
vector; in other words, we bring into the discussion the additional internal degree of
freedom, of the Ising type, which an antiferromagnet has. This additional degree of
freedom is associated with the circumstance that for §' = 1/2 the resultant spin of two
neighbors (the ferromagnetism vector), M,, =5,, +.5,,, ;, can take on two values:
M =1 and M = 0. Correspondingly, the square of the antiferromagnetism vector, i.e.,
the operator L,, = S5, ;, takes on the two values 0 and 3. All four states of M can be
described by the one-particle formalism if the operators M and L are associated with
Jree boson fields, rather than two, as in the semiclassical treatment. The explicit
transformation for making the switch to such bosons is
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M,=da-b'b, M, = \/2—(a+c —c'b), M =V2(da - bc) a
—_ - )
L,==(U+Uc), L,=v2@U+Ub), L =2 @'U + Ua),

where U= (1 —a*a — b b — ¢ ¢)'/2 Physical states at a site of the “double lattice”
correspond to the vacuum and to three states with a single excitation, of any type. In
the physical subspace, the commutation relations [M,M;]=ie;M,, [L,L;]
= i€ My, [M,L;] = ie; L, hold, along with the condition that the length of the
vector part of the order parameter, M ? 4+ L * = 3 is fixed. Furthermore, M does indeed
take on the values 0 and 1: M2=2(aTa— b *b—c*c). The matrix elements for
transitions between physical and nonphysical states are zero, so transformation (1)
may be regarded as exact at 7= 0. By using it we can express the original spins, S,
and S, |, in terms of bosons and therefore represent the antiferromagnet as a system
of three interacting Bose fields. The choice of four physical states of M,, means that
each of the spins S,,, S,,,, is described by one of the spinors ¢, @, where (1 = 2,
2=2/+1)

1
lay ) ~ —= 10y )= lcy)
1= 11 ' ‘P1=( \/2—'( vmia ,
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1
¢2=.( 1 Idz) ) $2:(72—-'(|02)+|02>)) .

72—(|02)"|C2)) "'Ibz)

Here |0), |a), |b), and |c) represent the vacuum and the states with a single excited
boson of a certain type. The terms S,,5,, | = 1/2(S, + S5, ;)? — 3/4 introduce a
nonlocal nature in the Bose Hamiltonian; in these terms, the interacting spins belong
to neighboring sites in the lattice coarsened by a factor of two. The redundancy of the
description of the states of the resultant spin, M =§,;, +.5,, ,, makes it possible to
incorporate, in a unique way, the interaction of the vector and scalar (a real scalar)
parts of the order parameter, after we use the components of the spinors to construct
four wave functions ¥ which give a complete description of the states M and after we
eliminate from the boson Hamiltonian the terms which contribute zero when applied
to any of the 1. We choose these wave functions to be

(2)

V=2 GOHD +0M)
1 M ~ !
V=5 LEDHD +elVelD) + @106 +7{Del))
—— 2)3(2) 4 H@) ) ;
Vil = 75 GO + 80068
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bo= 3 LG —oH) = G <GV
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where ¢, =@ ,;, ¢,=¢,, _, and the superscripts in parentheses specify the upper and
lower components of the spinors.

The modified Bose analog of the spin Hamiltonian H = X,§,.5,, | is written as
the sum H=H,, + H. + H¢,, where the first term is the boson version of Hamilto-

nian of a system with a vector order parameter. After we diagonalize the quadratic
form (a, b — p, q) and take the long-wavelength limit, this Hamiltonian becomes

~ 2
Hyy = ZIEIN2 G +pp)+ 57 T 01142044 + P3Pap1pa + 4142504
i

+q3q4D 102 + 21430594 + P1P243Pa — 41P29394 —D3PadaP1) — 441P293Ps) ()

where

gy Wl =k, 1
16°° (|k1k2k3k4|)l/2 C 242
The interaction of the excitations of the p and g types increases with increasing scale:
In the one-loop approximation we have g = g,/1 — g,/27|in k |. We would naturally
expect that this growth would lead to a dynamic generation of mass, as in the o model.
The second term, H,, originally corresponded to an Ising model with S =1/2 in a
transverse field. In the modified version, the quadratic form in H. becomes

cos 2k

1
H®) = 3 {(z¢ G NI ©

c, -
c kkk

in other words, the seed spectrum of excitations of type ¢ contains two Goldstone
models at £ =0 and at the boundary of the Brillouin zone in the doubled lattice,
k = 7/2. Separating out the low-energy regions, and diagonalizing the quadratic part
of the Hamiltonian, we find an expression which is precisely the same as (4), except
that ¢ has the opposite sign. In this case, therefore, the coupling constant demon-
strates a zero-charge behavior, and the seed rigidity of the spin waves is not disrupted
by fluctuations.

The last term describes the interaction of the subsystems with the vector and
scalar parts of the order parameter. A calculation shows that the corresponding cou-
pling constant does not undergo a logarithmic renormalization; in other words, at large
scales the gap excitations of types a and b differ from the gapless excitations of type c,
and we arrive at a critical theory specified by H_. The central charge C has twice the
value (two Goldstone bosons) in the Ising model; i.e., we have C =1, as for free
bosons, in agreement with the result of Ref. 7.

3. On the basis of this analysis of antiferromagnets with S'= 1/2 we could suggest
that the difference between Heisenberg antiferromagnets with integer and half-integer
values of S stems from a difference in the parity of the number of states of the ferro-
magnetism vector M = .5, + ;. For integer values of S, a complete description of the
states of M in terms of one-particle excitations would require the introduction of
(28 4+ 1)* — 1, i.e,, an even number, bosons. As we are assuming here, these bosons
will be either gap bosons or bosons coupled in pairs by a logarithmically growing
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interaction, so as a result all of the excitations will be gap excitations. For half-integer
values of S, in contrast, the number of bosons required is an odd number, and after
they are combined in pairs we are left with one extra boson, which determines the low-
energy properties of the antiferromagnet. Just what happens at the integrable points
for generalized models requires a separate study.

It is my pleasure to thank M. I. Kaganov and D. V. Khveshchenko for a discus-
sion of these results.
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