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The longitudinal component of the thermal emf tensor of a metal in a magnetic
field is found to experience giant oscillations.

It is well known that the kinetic characteristics of a metal, depending on the
strength of the magnetic field H applied to it, experience oscillations of the same type
as those occurring in the de Haas-van Alphen effect. If, however, the de Haas-van
Alphen oscillations are related to the periodic dependence of the thermodynamic po-
tential  (u) on the field H, oscillations of the kinetic characteristics will occur
because of the changes in the scattering of the conduction electrons in the magnetic
field. It was shown in Refs. 2 and 3 that the oscillating increment in the conductivity
occurs as a result of the change in the probability for the scattering of electrons by
impurities in the magnetic field. The magnetothermal emf has been studied until now,
however, either on the basis of a thermodynamic method* or as a first approximation
with respect to scattering,” while the dependence of the electron-impurity relaxation
time 7 on the magnetic field has been ignored.

In the present letter we analyze the oscillations of longitudinal magnetothermal
emf of a metal with an arbitrary Fermi surface, which result from the dependence of
the conduction-electron relaxation time on the field H. We will restrict the analysis to
the semiclassical case (} <u, where i is the chemical potential, and () is the cyclotron
frequency, but we will assume that 7> Q" If the magnetic field H is directed along
the z axis, the electron energy is given by the equation for the Landau levels
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where S(n,p,) = (2meH /c) (n + y) is the cross-sectional area of the constant-energy
surface in the plane p, = const, m* = (27) ~'(ds/Je) is the cyclotron mass, ) = eH /
m*c, 7, is the Pauli matrix, and y€[0,1].

Let us consider the case in which the metal is pure (77> 1), assuming, for simpli-
city, that the matrix element of the scattering, U, is a constant. In the semiclassical
limit, where the states are characterized by the quantum numbers 7 and p,, we find the
following expression for the scattering probability:
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If the interaction of electrons with the impurity is assumed to be independent of
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the electron spin, the spin projection does not change during the scattering and the
corresponding currents of electrons with spin projections + 1/2 can be considered
separately. Since the kinetics of the metal is determined exclusively by the electrons
near the Fermi surface (£ = €, — u S T), and since the factor cosh™? [ (e, —p)/2T ]
always appears in the integral expressions for the kinetic coeflicients, we can formally
include the spin dependence of € in the chemical potential

€ Py M —B=€@,n) ~ By, K = RF O (3)

The expression for the scattering probability W(e¢), transformed by means of the
Poisson formula, becomes
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where Wy = 7n;|U|*v(€) is the scattering probability which does not depend on the
field H.

Changing in a standard fashion from integration over n’ to integration over the
energy, expanding n(e,p,) in powers of p, near the points of the extreme value of
n,, (€), and, finally, integrating over p, and € for the relaxation time 7, we find
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where 7, = W '. Summation over m means summation over all of the extreme cross
sections of the Fermi surface in the plane p, = const, and 5 = sign(d2S,,/dp?).

Letus calculate the component of the 5, tensor of the thermoelectric coefficient
B (VT|E|H| to the z axis)

kak
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Substituting expression (5) in (6), integrating over &, and averging over the spin
projections, we find

B, =B, +BE (7

where 82, = — (er?/9) T{|d(v*7yv)/du]}u is the thermoelectric coefficient 5 in the
absence of a magnetic field, and
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In contrast with the background part of B, in the calculation of integral (6) the
principal frequency dependence (in the parameter u/€)) was found to be attributable
to.the rapidly oscillating exponential function, rather than to the standard term ~¢&2.
Interestingly, the function included in the result
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is the total derivative of the function W (x) = x/sinhx{¥,(x) = — (#/2)¥'(x)) which

arises in the description of the oscillations of the Shubnikov-de Haas conductivity of
the normal metal in a magnetic field.’

The behavior of the longitudinal magnetothermal emf, @,, (Q) = — f3,,/0,, coin-
cides with the behavior of the thermoelectric coefficient 3,, within terms of order
~0/u. The relative oscillations of the conductivity (o,, — 02,)/0°, in a magnetic
field have the form
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It is easy to see that these oscillations in the parameter )/ are small compared with
the oscillations B2 /3% , with which they do not coincide in phase, since Q_ ()
= ﬁ g/ Oz

For clarity, further analysis will be carried out on the basis of a model for free

electrons [€ = Q(n + 1/2) + p2/2m, m* = m, (d°s/Ip?) = — 2], where expression
(8) is simplified considerably

B = (6/m*)BS, (W2T)?(Q/T)!'?
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In the case of weak fields (2 <27*T), because the terms of the series decrease
exponentially, we can use in (11) only the first term of the sum with & = 1, and for the
thermoelectric coefficient we find
2mw3T Pk TR 4
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In the case of strong fields (Q1>27°T) we can estimate the sum in (11) by using
only the terms with k S k,~ (Q/272T) in the summation of the series and by replacing
the function ¥ (2727 /Q) with its asymptotic value in the case of small arguments.
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At the points Qy, ,, such that u/Qy, ,,, = N+ 1/2 (N is an integer), where all the
terms of the sum in (13) have the same sign 87 (Qy, 1, ) ~Bo(/ TV (Qy, 1,/ T).
The value of the thermoelectric coefficient can also be determined at the other singular
point ) =, . ,. Here the expression enclosed in square brackets in (13) has the
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FIG. 1. Relative thermoelectric coefficient 5% /B° plotted schematically as a function of the cyclotron
frequency Q) = eH /m*c. The points N + a represent the values of Q, ,, for which 4/Qy, ,=N+a,
where N is an integer.
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value of 4+ 1 and the sum can be calculated. This sum is defined by its first terms
[rather than by the upper limit, as was the case for s(Qn, 1,,)]; B¥(Qn,14)
= —0.656,(1t/Qy, 1,4)""* A similar analysis of the sum in (13) at the points Q,
and Qy _,,4 shows that S(Qy) ~B(Qx_ 1,4) ~Bo(e/T)'2, but the sign of this sum
changes rapidly changing ().

We note that £ is larger than /3, with respect to the large parameter /7" In this
respect, we can say that giant oscillations arise in the longitudinal thermal emf in a
strong magnetic field (Q>27°T).

The oscillations of the coefficient 22 which set in with increasing magnetic field
are shown schematically in Fig. 1. Sinusoidal oscillations with a gradually increasing
amplitude occur in weak fields. In strong fields, however, the curve becomes strongly
asymmetric with respect to the ) axis, displays peaks in the region £>0, which
correspond to the points /N + 1/2, and at the points u/N + 1/4, f<0 it has an
inflection which increases markedly with increasing field.

We wish to extend our deep appreciation to A. A. Abrikosov for interest in this
study and for useful remarks.
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