Radiative corrections to the axial anomaly
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The anomaly in the divergence of the axial current is not exhausted by a single loop.
A component which has previously been neglected comes from the diagrams
representing the scattering of light by light. The radiative corrections are
calculated for QED, a non-Abelian gauge theory, and a supersymmetric gauge
theory.

For many years it has been believed that the size of the divergence of the axial
current is determined by a single loop (the Adler-Bardeen theorem'). In supersymme-
tric theories this divergence appears in one supermultiplet with the trace of the energy-
momentum tensor, which is proportional to a f function, so it should not be exhausted
by a single loop. Attempts to resolve this paradox now constitute an extensive litera-
ture. '3

In the present letter we show that in any theory, including theories which are not
supersymmetric, the anomaly in the axial current is of a multiloop nature. Our obser-
vation is that the diagrams for the scattering of light by light, which were discarded in
Ref. 1 on the basis of dimensionality considerations, cannot be omitted if the mass of
the fermion is zero. Actually, the diagram for an anomaly with scattering of light by
light (Fig. 1) was estimated in Ref. 1 to be ~ FF(k,k,/m?), where m is the mass of a
fermion, and the factor k k,/m? stems from the scattering of light by light. If we have
m = 0 (actually, m*<|k?|, |k3|, |k k,|), however, this estimate is incorrect: The am-
plitude for the scattering of light by light is ~1.

We have carried out a direct calculation of the diagrams with a scattering of light
by light, of the type in Fig. 1, for QED by the background-field method. Although
some complex functions of the external momenta appear in the intermediate expres-
sions, the final result for the amplitude of the transition of two photons, d, j >, has a
very simple form:
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Here A is the ultraviolet cutoff, and the coefficient of the logarithm does not depend
on the relation between k3 and k2, and k> = (k, + k,)* We have omitted some finite
terms ~e¢¢ from (1).

The common factor of €§ in (1) transforms into a renormalized charge when
radiative corrections to the external photon lines are taken into account. The depen-
dence on the cutoff in parentheses in (1) can be eliminated through a multiplicative
renormalization of the operator d,j;. If we multiply both sides of (1) by
Z=1+ Ce} and use e = e* (k) (1 + (1/127 %) X2 (k)InA?*/k?), we find that the de-
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pendence on A disappears at C = 9/167 >. We find
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The need for a renormalization of Eq. (1) is quite natural since the unconserved
current j ), appears in this equation.” The renormalization of the divergence d,, j;, is
determined directly in the lowest nonvanishing approximation by the diagram in Fig.
2, where a regulator fermion field with a mass M — « propagates in the triangle. A
direct calculation of the diagram in Fig. 2 yields
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where p is the momentum of a massless fermion. Like expression (1), relation (3)
requires a multiplicative renormalization with Z = 1 4 9¢5 /167 %. The agreement of
the constants Z found from (1) and (3) is a test of the validity of the contribution

from the scattering of a photon by a photon which we calculated.

FIG. 2.
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What happens if m#0? At m? ~k?, in the single-loop approximation, the ampli-
tude of the transition to two photons, d, j ;, is'®
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o o
A direct calculation of diagrams of the type in Fig. 1 with m#0 yields
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As in the massless case, all of contribution (5) is determined by diagrams in which a
regulator fermion propagates in a triangle, while a light fermion propagates in a
square.

In Eq. (5) we find the same expression (1 + 2m*l,,) as in (4), but, in contrast
with (4), it arises in this case from the integration of the square, not of the triangle. It
is for this reason that we have a multiplicative renormalizability of the amplitude. The
value of Z, of course, does not depend on the relation between m? and k2 here. At
m?>k? we have 1+ 2m?I,,—0. In (4), this circumstance reflects the fact that the
contributions of the regulator and physical fermions cancel out, while in (5) it corre-
sponds to Adler and Bardeen’s arguments regarding the suppression of the diagrams
for scattering of light by light by a factor of k*/m*.

The equations written above allow a renormalization-group generalization. Using
the standard technique (the Kalan-Simanzik equation), we can easily derive the fol-
lowing exact relations:

etfk) ~ A2 e*(k) ~ Z(e*(k) )
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where
e? yle}) :
Zfe?) = expf0 “ﬁ(elf 5 de? , (7

B(e”) is the Gell-Mann-Low function, and y(e®) is the anomalous dimensionality of
the operator j ;.

As we know from Adler and Bardeen’s analysis,' there is no two-loop correction
to the anomaly.? This result means that we have @(e2,In"'/k?) = 1 4+ O(e}). Using
the values B(e*) = ¢*/127? and y(e?) = 3e*/647*, we can reproduce Eq. (2).

Without derivation, we offer a generalization of Eq. (2) to the case of a non-
Abelian gauge theory with the SU(N) group, with a fermion which belongs to repre-
sentation R:
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Here 1, is given by (4) with m = 0. We see that the expression for d,, j ; is not a
numerical series in g(k) in this case. The last term in (8) comes from the gluon self-
effect.

We turn now to supersymmetric QED. We have already calculated the radiative
corrections to the vortex for the emission of two photons from one point: the quantity
FF. In a supersymmetric theory, FFis in the imaginary part of the F term of the square
of the superfield, W W, = W2 We must accordingly find the radiative corrections to
W?2. We consider the generating functional J in the presence of an external vector
superfield

J=fDVD¢ D¢ expiS(V+V,.,. ¢, 6)), (9
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The logarithmic derivative of the functional J with respect to 1/g; determines the
exact value (including all of the radiative corrections) of the quantity W2, integrated
over d *xd *6:

fd*xd*9(w?) = — 4i3 /3(1/g2 )InJ. (10)
The differentiation here should be understood somewhat loosely: The coefficients of

W2 and W? in the expression for the action must be regarded as independent.

On the other hand, we can write J in terms of an effective action which depends
on the external field V,,, and the characteristic momentum associated with this field:

J = eiScff P Sy = [d* x ([Wii]r+Ha). (11)

2(k}

In the expression for S.; we have retained only the terms which are quadratic in W, .
Differentiating (11) with respect to 1/g5, we find
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where 3 and f3, are the exact and single-loop 5 functions. We have tested the validity
of (12) in the first approximation in g3 (~giln(A?/k?) by a direct calculation in
which we made use of the method of supergraphs in a background field.'” Grisaru et
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al.'* have pointed out that a regularized expression for j can be constructed by
various methods. In one of these methods, the quantity d, j?, does not have a two-loop
correction, and at this accuracy level the divergence of the current would satisfy the
Adler-Bardeen theorem. However, the diagrams corresponding to the scattering of
light by light {Eq. 12] make the three-loop correction ~g5ln(A2/k?) nonzero. After a
renormalization, i.e., after a multiplication of d, /> by a suitable Z(g;), we find a
correction ~g*(k), which agrees with the appearance of a complete 8 function in the
equation for 4, j *. In another method for determining the current j >, it appears in
one supermultiplet with an energy-momentum tensor & ... In this case, Grisaru ef al.'*

FIai

found a correction ~gg even at the two-loop level. That result is not surprising: In this
case the current j;, does not require renormalization (its anomalous dimensionality,
like 6,,, is zero), so there are no functions Z(g>(k)) and Z(g2) in Eq. (6). The

v

function ¢(g?,0), however, which depends on the definition of the regularized current,
is actually nonzero: @(g>(k),0) = B(g*)/B,(g>). The final result for the quantity
a,J fl is found by the same method as was used for the first determination of the
current.

In a separate paper we will analyze physical applications of the multiloop nature
of the anomaly.

We wish to thank L. B. Okun’, M. L. Eides, and, especially, A. M. Polyakov for
useful discussions.

"The quantity j is renormalized multiplicatively. The current K, (3 K, = FF), which has the same
dimensionality, cannot be (locally) mixed with j 3, since it is gauge-invariant.

?Novikov ef al.'* have linked this fact with the “two-limit technique” which was used in Ref. 1. It can be
shown by the background-field method, however, that the two-loop correction actually disappears even

before the integration over the coordinates.
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