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A representation of a Kac-Moody algebra in terms of free fields is discussed.

1. Finding the multiloop correlation functions in a 2D conformal theory requires
expressing these functions in terms of the correlation functions of some free fields on a
Riemann surface. We will, somewhat loosely, call this procedure “bozonization.”" So
far, bozonization is being studied primarily for minimal models, which reduce to a
theory of free scalar fields with values in a circle.?* In order to make the transition to
conformal theories of a general type, it is useful to consider the Wess-Zumino-Witten
model,** since all nontrivial conformal theories can apparently be derived from it by
means of a Goddard-Kent-Olive projection.®

2. For simplicity we begin with the case of the Wess-Zumino-Witten model which
is associated with a Kac-Moody algebra SU(2), . The currents can then be written in
terms of the three free fields y, W, ¢, of which y and W are boson 0- and 1-differen-
tials, while ¢ is a scalar field with values in a circle’:

=W
H=2xW + v 29 ¢ (1)
J = X*W + /2qx3¢ +(2 - q*)dx .

The operator expansions are of the form W(z)y(0)= 4+1/z+ ..,
#(2)p(0) = +logz+ ..., J . (2DHO)= +2J, /z+.., J (2)J_(0)= —k/z
+H/z+..,H(z)H0) = + 2k /z* + ... . The central charge of a Kac-Moody algebra
is k= — 2 4 ¢% and the energy-momentum tensor is
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The central charge is ¢=3k/(k+2)=3—6/q; we have Cwy = +2 and
¢y = 1 — 6/¢°. The radius of the circle in which ¢ takes on values is proportional to g.
At integer values of g* the model is a rational conformal theory and can be specified by
means of the action

kTr[ f 1g”'ogl*+ [ (g 'dg)]. (3)
d?t d3t

Correlation functions are constructed in this theory from products of the correla-
tion functions of the free fields ¢ and Wy. The correlation functions of the fields ¢ on a
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surface of arbitrary kind are described in Refs. 3 and 8, among other places. They are
expressed in terms of Prime bidifferentials and the theta function @, ,, oflevel £ +2
[i.e., with a matrix of periods which is multiplied by 2(k 4+ 2)]. We will not reproduce
these familiar equations here.

The correlation functions of the boson fields 5, ¥*' =7 with spins j and 1 —j
and with an energy-momentum tensor Ty, = — jBdy + (j — 1)ydf3 are less trivial
than the correlation functions for Grassmann b,c systems.*® They are constructed in
the following way.'° First, the boson fields /3,y can be represented locally as the prod-
ucts VB =9E e ;1P =p'Ye™ ¥, where u is a boson field with values in a
circle, and &7 are anticommuting fields with spins O and 1. Here T, = nd&;
T, = —3(3u)* — (2j — 1)3*u. We then have!'®
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[E(x,y) is a Prime bidifferential, o(z) is the cross section for the trivial stratification,
and 6 is the ordinary theta function on a Riemann surface'’]. In our case we have
j=1,B8Y =W, and ¥ =y.

These expressions are our starting point for constructing conformal blocks in the
Wess-Zumino-Witten model SU(2),. The conformal blocks themselves are certain
linear combinations of the correlation functions written above (included in the linear
combinations are integrals over noncontractible contours of operators of unit dimen-
sionality; for the case of kind O these integrals reduce to generalized hypergeometric
functions™).

3. It is a simple matter to generalize this construction to the case of a Wess-
Zumino-Witten model with an arbitrary algebra G or its Goddard-Kent-Olive projec-
tion. The starting point for constructing a bosonization of the type in (1) is a represen-
tation of group G in the algebra of vector fields on the space G/H. In this case
Yo (a = 1,.,dim:G /H) are coordinates on G /H, and we have W, ~d /dy,,. To derive
(1), we must allow W, and y, to depend on z, Z, and we must construct a central
expansion.

The Wess-Zumino-Witten model itself with a central charge ¢=kD/
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(k+C,)=D(—C,/(k+ C,) corresponds to the choice of a homogeneous space
G /H of dimensionality D — r (D and r are the dimensionality and rank of algebra G).
The independent free fields y,, and W, (which are, as before, boson O- and 1-differen-
tials) are then associated with positive roots of the Lie algebra G, a, €, 2, while the
scalar fields ¢, (i =1,...,r) are associated with values in circles: Cartan generators.
The current corresponding to the Cartan vector ji has the simple form

-, >
H = 2 (pa)X,W, +qude. (5)
a €L,

The central charge of the algebra is thus

k=-C +q% (6)
(p)C, =2 s (w,a){a,v}), and the energy-momentum tensor of the fields y,,
W, and¢ is
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The central charge ¢ =D — DC,/(k + C,) is the sum of ¢, v, = +t2,0fc; = +1
for all ¢ which are orthogonal with respect to the vector = 12,5 @, and of the
central charge of the field ¢ 4, which is collinear with this vector, ‘which is equal
to 1— 12;22/(1 =1—-DC,/(k+ C,). The l-loop characters are y~n(q)”
(B ) 0”7,

The other currents, which are Kac-Moody generators, /. , for a€X , are given by
rather lengthy expressions. For example, in the SU(3), case (Fig. 1) we have

]

A W, —ax, W, (8)
I, =W,
Ja= W3+ bxy W,
J_ = xf Wi+ bX X, Wa— DX X3 Wa + X, Wy + abxf XsW, + (2+b—q?)3x,
+ax; E: a‘F
T, = XaXa Wi + X5 Wa + XaXsW; + ax?xs Wy —bx,xiWs +abxi X2 W,
+ (3-4M)0xa + aX2 %36 +a(2—47)X33X1 = b(2—47)X13%s +aX1 X(@% ~b %3)0¢
J_=—axixsWitaxaxsWa +x3Ws—xa Wi—abx1x: W,
+(2+a-¢*)xa +ax: %08

Hy = 20 Wy + X Wy —x3 W + q&, 36
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FIG. 1. Diagram of the roots of the SU(3) algebra.

H,y

X1 Wi+ 2x, W, + xaWs + q(-;,aq?

Hy == x Wi+ x2 Wy + 2x3Ws + q&’; 6¢~);

[

J3(2)73(0) = NpgJz.z/z+ .. for d+Fex (N2 2= t1),
Ja(z}Hp 0) = (q ﬂ)Ja/z+ .y

T (20 o (0) = = kjz* + H, [z+.., H(z)H,0) =+ (a,Bk/z*+ 0(1);

—

1 1 V2
T =—Wy3x; = Wodx,— W3dx5 — 7 (3¢1)* — ?(a¢2)2" i 3¢, -

9

The central charges are k = — 3 + ¢* and ¢ = 8k /(k + 3) = 8 — 24/4". The vectors
d,, @, d; are directed along the three positive roots and are of identical length

Wa,a) = 2. The parameters a and b are related by
atb=1 (10)

The specific choice of ¢ is not important [representation (8) simplifies slightly if we
choose a =0 and b = 1]. Equations (8) correspond to the space G/H =SU(3)/
U(1) X U(1). Other choices of G /H are associated with Goddard-Kent-Olive projec-
tions of the SU(3) model. The number of fields y,,, W, decreases in the obvious way.

All of the fields y,, W,, and ¢; are free and independent. The correlation func-
tions of these fields which we need for constructing the conformal blocks are described
in §2. Note, however, that—as in the case of minimal models—choosing correct linear
combinations is not a totally trivial matter [and this is true even in the case of the free
SU(2), _, theory].

I am indebted to A. Gerasimov, V. Dotsenko, A. Marshakov, A. Mironov, G.
Mur, A. Roslyi, V. Fateev, V. Fok, S. Shatashvili, and A. Shvarts for discussions.

348 JETP Lett., Vol. 49, No. 6, 25 March 1989 A.Morozov 348



"In the literature this term is sometimes used in a more general sense: in a reformulation of the theory in
terms of boson fields which are not free (the energy-momentum tensor is not quadratic) (Ref. 1, for
example). Such a formulation, however, does not make it possible to calculate correlation functions direct-

ly.
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