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The contribution of the monopoles to the plasma partition function at high
temperatures is calculated. The monopole density, which is a measure of the
nonconservation of the fermion number in the medium, is determined.

We know that grand unified models have monopoles'?: soliton-type particles. At
low temperatures monopole fluctuations in a thermodynamic system are unlikely to
occur because of the large monopole mass. The partition function in this case is satu-
rated by elementary particles: by gauge- and scalar-field quanta. As the temperature is
raised, the probability for monopole fluctuations increases. To determine this probabil-
ity, let us consider, for simplicity, the gauge theory with a scalar-field triplet from the
SU(2) group. In Euclidean space it is described by the Lagrangian
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The monopole solution is"?
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A;’/r)=ea,,, f(r/ ¢, /r)——ch(r), (2)

1(0) =f0) =0, h(=%)=f(=<) = 1.

This solution minimizes the static part of the energy functional

A |
E(4,p)=]d*x{ (F") —(D,w,,)’ + @, (3)
and the monopole mass is
41rmv ) _
M=E_ .= 2 e(Ng*), m =gc, (4)

where the function € depends only slightly on the argument and €(0) = 1.

Let us assume that the temperature lies in the interval m, € T<c. The tempera-
ture is, on the other hand, low enough to prevent the monopoles from dissolving in the
medium, but high enough to satisfy the high-temperature approximation’:

1 A 1
Z=Trexp(— ;H)wadAdgoexp(— fE(A’ ©)) (5)

where N is the normalization constant.

Substituting the variables

- "4 - -
g=— =, ¢=—=, A=M\T, g* =g°T, (6)
vT° V' VT

we reduce the functional integral to the form

Z=NfdAdge E4 9 (7
At high temperatures the original model thus reduces to an effective three-dimensional
model (3), (7) with effective coupling constants A, g%, and ¢.

The 3D model (7) was studied by Polyakov* in connection with the confinement
problem. He calculated the functional integral (7) in the approximation of a low-
density monopole gas:
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Here
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where f is a calculable function. The function U, is the interaction energy of N *
monopoles and N 7 antimonopoles. This function can be written in the form*>

v, = = (3 e " 4
N 2. - =2
i<j Ri]’ Rii g

Here mj, = 2A¢% R,; = |x;, — x;|, and g, = + 1 are the monopole (antimonopole)
charges.

If the interaction energy is ignored, we can sum the partition function (8)
Z,on =exp(2kV).

The concentration of the monopoles and antimonopoles can thus be easily determined:

+._‘__3m3/2?MT 9
nt=n —k—mu(gz;,) feM/T, &)

Note the difference between this distribution and Boltzmann’s distribution which
holds at low temperatures, T<m,:
ot = (i{T_)alz-e—M/T.
5 2n
Note also that Eq. (9) was found from effective theory (7) which ignores the contin-
uum which leads to a renormalization of the coupling constants by the temperature
corrections: C(T), g2(T), and A(T). As a result, the monopole mass becomes a func-

tion of the temperature M(7T). A correct transition to a high-temperature approxima-
tion was demonstrated in Ref. 6 in the particular case of a 2D model.

The internal energy of the gas can be calculated from an equation. This energy is
, an 3 am
u=T*— =Mn—- —nT—nT—— .
dar 2 ar
In contrast with the Boltzmann distribution, we have up, = Mn, + (3/2)n,T.

Since a single monopole leads to a strong nonconservation of the fermion num-
ber,”® a concentration of monopole pairs (9) can be regarded as a measure of the
nonconservation of the fermion number in the medium due to the monopoles.

This effect supplements the sphaleron mechanism for the nonconservation of the
fermion number in the medium. This mechanism was studied in Refs. 9-11.

We wish to thank V. A. Rubakov and M. E. Shaposhnikov for useful remarks.
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