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The effect of a superconducting condensate on the selection rules for electron
transitions due to a violation of gradient invariance is analyzed.

1. Multicharge centers have traditionally been discussed in the theory of semicon-
ductors, and recently they have also been discussed in connection with searches for
nontrivial superconductivity mechanisms. In various scenarios, theories of high-tem-
perature superconductivity are based on the idea of quasilocal electron pairs as centers
with a negative correlation energy U.

In this letter we wish to call attention to another aspect of the behavior of multie-
lectron centers, which is associated exclusively with the presence of a superconducting
condensate—no matter why it appeared. In precisely the same way, the nature of the
formation of the U centers (a bipolaron’ or biexciton?) is important. The effects which
we discuss here may be observed in deep-center spectroscopy in semiconductors, and
they should be helpful in identifying the actual mechanism for high-temperature
superconductivity.

2. A common feature of these systems is that the two-electron hybridization J of
the states which are localized at the center and the band states must be taken into
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account. This hybridization may be direct or associated with one-electron transitions
which are correlated in time by virtue of an electron-electron coupling.

The model Hamiltonian of the problem is

A A A 1
Hth +H (1)

where ?Iband is the Hamiltonian of the band electrons, which incorporates the possibil-
ity of a superconducting pairing of these electrons; H,, is the Hamiltonian of the U
center, given by

A
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and Hlm is the Hamiltonian of the effective two-electron hybridization, given by
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Here €, is the one-electron energy of the center, y is the chemical potential, b 1 and at
are the intracenter and band operators which annihilate electrons with spin up, k is the

quasimomentum, and 7,,, = b 7,, b, ,, are the operators representing the number of
electrons at a center.

If there is a ﬁnite density of a superconducting condensate of band electrons near
the center, ¥(0) = 2, {4\, ap R ) #£0, the eigenfunctions |, ) and the eigenvalues E;

of the Hamiltonian of the pair, H,OC + Hm,, can be determined accurately in the basis
of intracenter states with a definite number of particles in the approximation of a self-
consistent field in terms of the band states:

10, IN=510), 1)=5}10), 1D=5,5,10)- (4)
The corresponding expressions are
EH =E, =€y — U, I‘p1’¢)= I, 14)
E, =e~p+(U/D) tl(er ~ 1 + (U + A1V, A=FE(0)
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According to these expressions, the appearance of a superconductivity does not alter
the energy E, or the wave function [@, ) of a singly filled U center, but it mixes the
|0) and |2) states. If A540, there will be 2u” electrons in state |@_ ), and 2¢? in state
{@_), while with A =0 and g <€, + (U /2) the state |@_) corresponds to an empty
center, and |@ ) to a doubly filled center (if x> ¢, + U/2, on the other hand, the
state |@_ ) is empty). In the case U <0, according to (5), the state |@_ ) is always the
ground state, so a center with a negative correlation energy stimulates the appearance
of a superconducting condensate W(0) near itself.
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3. The average number (n;) of electrons at a center in the state |g;)
(i=1,l,+,—) can be calculated for an arbitrary temperature 7 by two methods:
a) through a direct averaging,

72y A
n;= Wy, ln, *n, ly,); (6)
b) by means of the thermodynamic relation
Q OF,
LN (7
'QE; ou

Here W, =Z 'exp{ —E,/T} is the probability for the excitation of level J,
Z =73 exp{ —E,/T}, and Q = — TInZ is the thermodynamic potential. These meth-
ods of course lead to the same results if we incorporate the nontrivial (nonadditive)
dependence of the energies £, on the chemical potential when we carry out the
differentiation in (7).

4. As a result of the nonconservation of the numbers of particles in the states
|@ , ) in the presence of a superconducting condensate, a change will occur in the
selection rules for transitions associated with one-electron operators of the type
¢ b, b e, ,brh,. Here ¢, is the operator which annihilates an electron in some
(localized or band) highly excited state |@) = ¢,;" |0) with an energy E, =€, — u.
The transition amplitudes corresponding to these operators can be found easily with
the help of (5):

c';(‘pllb1 lg)=ci(y,lb 1oy =vc} andc.c. (8)
~{y,l bl ¢, ), =(p, 1B lgde, =uc, and c.c. 9
(gl Bb 1@ =—~uv and c.c. (10)

If there is no condensate, then at small values of the Fermi level (u <€, + U/2), for
which (with U<0) the ground state |¢_) corresponds to empty centers (n_ =0),
transitions (8) are strictly forbidden (v=0). At high values of the Fermi energy
(1> €, + U /2) the ground state |@_) corresponds to doubly filled centers (n_ = 2),
and transitions (9) are strictly forbidden (#=0). Transitions of the type in (10) are
always forbidden if W (0)=0. If there is a condensate, on the other hand, all of transi-
tions (8)—(10) will be allowed to an extent which increases with the density of the
condensate.

Figure 1 shows a skeletal diagram corresponding to all these transitions, along
with the dependence of the energies of the states |, | ),|@, ), and |a) and that of the
vacuum state |0) on the chemical potential 2. Also shown here (for U <0) are all of
the additional transitions which arise in the system when there is a superconducting
condensate. Transitions I and II correspond to processes (8), III and IV to (9), and V
to (10). The conjugate (inverse) transitions differ from those shown in this figure in
that the pairs of arrows are reversed. There is an absorption (or evolution) of energy
in transitions I and II:
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Q(II):EQ+E+—E1z€a+eo+U_2“ v>0 .
For transitions III and IV we have
Q(IV)__-E-&_Ea_E‘N_ea—GO*.Z” } A->Q (12)
Q) =E, ~E,-E ~-¢ —¢e-Ut2u *“~0°
and for transition V we have
UV)=E, —E =2[(eo — 1+ (U/2))* + A%V %, (13)

Energies of opposite sign correspond to the inverse transitions. All of transitions (11)-
(13), which are forbidden in the absence of a superconductivity, depend explicitly on
the chemical potential. This dependence indicates that these transitions are related to a
creation of electron pairs from the condensate. The probability for such transitions is
determined by the probability (#;) for the excitation of level /, not by the number of
electrons in it.

5. Transitions (11) and (12) can be seen in optical spectra if the nonzero dipole
matrix elements between highly excited state |a) and the states of the U center are
nonzero. Transition V [see (13)] can also be observed in Raman scattering. Here it is
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extremely pertinent to note the results of Ref. 3, where some new lines were observed
in the cathodoluminescence spectrum of the superconducting phase of an yttrium-
barium ceramic.

At a superconductor-insulator-superconductor tunnel junction, the presence of
centers with a negative correlation energy U in the insulator should lead [according to
(5)] to an increase in the transmission of the junction. Furthermore, additional reson-
ances appear in the current-voltage characteristic of the junction because of transitions
(11)-(13). A Josephson structure of this sort should also acquire some new Raman
frequencies because of the tunneling of an electron through a U center in the insulator.

A promising possibility is to use a semiconductor-superconductor junction to
study multielectron centers in semiconductors. Such a junction would make it possible
not only to observe the new spectral lines corresponding to (11)-(13) but also to
control their positions, through a variation of the chemical potential of the semicon-
ductor by an external agent. The same comments apply to a study of the structure of
dye molecules adsorbed on a superconductor.

The possibilities for observing transitions (11)—(13) are limited in terms of fre-
quency by virtue of the spectral variation of the superconducting gap, A(w). We
would ordinarily have A(w)—0 at frequencies w greater than the typical phonon
frequencies. If, however, the superconductivity itself is due in large part to the pres-
ence of quasilocal electron pairs, the Eliashberg equations will contain—in addition to
the ordinary exchange diagram—a Hartree part which does not depend on . A “ped-
estal” will thus be formed on the A(w) dependence. It is possible that specifically this
superconductivity mechanism is operating in high-temperature superconductors. In
such a case, a structure of the (high-temperature superconductor-semiconductor type
would be the most promising for observing the effects which we have been discussing
here.
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