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Analogies between instanton solutions and fractional topological charges
are discussed.

Because of the summation over all types of boundary conditions, all possible
mappings of Riemann surfaces into the factors of the sigma-model manifold M under
group T contribute to the generating functionals of two-dimensional N = 2 supersym-
metric sigma models. If the fields satisfy the classical equations of motion, these mani-
folds describe nonperturbative fluctuations: instantons, torons, etc. For some of these
classical solutions there are precisely two fermion zero modes, so the condensates
(¥p)y which arise in N = 2 supersymmetric sigma models are saturated. A very simple
example of this phenomenon, for which M /I" are nonsingular manifolds without a
boundary—flag spaces M = F, = SU(n + 1)/U(1)"—has been studied.

1. Two-dimensional N = 2 supersymmetric sigma models L = fK(®)d *zd *6d *6
are constructed from Kédhler manifolds .44 with a Kéhler potential K. In all sigma
models on compact Kdhler manifolds there are instantons which are solutions of the
duality equations 9¢ = 0. The number (#,) of real fermion zero modes in the field of
an instanton is determined by the index theorem:

2
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An instanton calculus in supersymmetric theories' has made it possible, in partic-

ular, to show that the existence of fermion condensates <(?p¢)”r/2> follows from the

existence of solutions of the duality equations with n fermion zero modes. The corre-
lation decay principle, if it holds for such supersymmetric theories, would then mean
that there must also exist binary condensates {(i1%). A classical solution with n, =2
would have led to the formation of just this type of condensate. So far, a solution of
this sort is known only for the SU(N) supersymmetric Yang-Mills model with d = 4
(Ref. 2). These are the well-known "t Hooft torons.? In 1984, A. S. Shvarts and the
present authors (unpublished) found a solution with n, =2 for a two-dimensional
O;-sigma model [M = SU(2)/U(1) two-dimensional sphere]—a so-called projection
(more on this below).

2. The general formulation of the problem of a nonperturbative quantum-me-
chanical description of a theory with a given classical Lagrangian presupposes a sum-
mation over all the boundary conditions at the space-time infinity. Here the physical
fields can take on values in the minimal of the manifolds of fields, which is compatible
with the symmetries of the original action. One should thus consider all possible
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mappings $'“ — M /T". In conformally invariant theories, the S are any conformally
planar d-dimensional manifolds; for two-dimensional sigma models, the S are any
Riemann surfaces, possibly with an edge or with singularities. Here M is the manifold
in which the fields take on values, in this case a sigma-model manifold; I" is some
invariance subgroup of the classical action. Various topological mapping classes,
which differ in the particular choice of $'“ and I, contribute to various correlation
functions. Binary fermion correlation functions are determined by mappings with
ng=2.

In some cases it is apparently reasonable to understand M as representing an
entire equivalence class of sigma-model manifolds. In cases with discrete groups I' the
factor M /T" may turn out to be a singular manifold: an orbifold. This happens even in
the case’ M = CP", In the simplest cases, T acts freely—without fixed points—on
M, and M /T is an ordinary nonsingular manifold without an edge (but which is
possibly nonorientable). We will discuss one such example below: that with
M=F,=S8Un+1)/U(1)".

3. We begin with the simplest version of an O, sigma model: M = F, = SU(2)/
U(1) = CP! = two-dimensional sphere. This example is particularly simple because
the dimensionalities of manifold M and the space-time are the same. If we impose the
boundary conditions ¢(z) —const as |z| - o0, which correspond to a sphere, at the
space-time infinity, the mapping CP!— F, with the minimal topological charge—an
instanton-—describes a field configuration with four real fermion zero modes: n, = 4.
A mapping with n, =2 must be “half as large”: CP'/Z,—~F,/Z,. The space-time
CP'/Z, cannot have singularities, at least not at any finite points, so in this case we
would like to have Z, act on CP' without fixed points. There is such a Z, isometry for
CP': In complex coordinates Z on CP', it acts in accordance with the rule z— — 1/ Z.
Fixed points would have to satisfy the quality |z|> = — 1, so they do not exist. The
factor space CP'/Z, is a nonorientable Riemann surface without an edge: a real pro-
jective space RP?. The mapping of the space-time CP '/Z, into a sphere F,, which has a
unit topological charge in the ordinary sense, is not a minimal mapping if we regard it
as a mapping into the manifold RP? = F,/Z,. The minimal mapping CP'/Z,~F,/Z,
has a topological charge of 1/2 and leads to half as many zero modes: n, = 2.

Note also that a factorization in accordance with an antiholomorphic Z, isometry
does not disrupt the duality equations. A splicing of different maps (nonholomorphic)
is of course matched for the identity mapping CP '/Z,— F,/Z,. The “projection” con-
structed in this fashion solves the problem of the classical configuration with #, = 2 in
the case of a sphere. To show that a toron would be unsuitable for this purpose, it is
sufficient to verify that any mapping of a torus R */4,X Z,—~F,/Z, (for any imagina-
ble Z, isometry) is continued to the mapping R >/Z, X Z, — F, and thus has an integer
topological charge.

4. In the general case of a sigma model on a manifold F, we have n, = 4 for an
instanton solution,” so for our purposes we need a configuration with half the topologi-
cal charge. In order to construct a corresponding solution we must find (a) a Z,
symmetry of F, and (b) a mapping of a Riemann surface into F,/Z, which is not
continued to a mapping into all F,,. We will show that a projection solves the problem
for all n.
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For example, the Kahler manifold F, = SU(3)/U(1) X U(1) is embedded as a
complex submanifold in the product CP>XCPZ2 The space CP?>=SU(3)/
SU(2) X U(1) can be written in terms of the uniform coordinates p,,p,,ps. Let us
assume that g,,4,,g; are uniform coordinates on the second CP?. We can then specify
F, in CP*>X CP? by the analytic equation p,g, = 0. On the product CP?X CP?, the
group SU(3) X SU(3) acts transitively; the equations p;q, = 0 and thus F, are invar-
iant under the diagonal subgroup SU(3). The invariance group of an individual pont
F, is U(1)XU(1); for p, =p,=q, =g, =0, say, the meaning is rotations of the
phases of the numbers p,#0 and ¢,#0. The free action of the discrete antiholomor-
phic Z, isometry on F, can be defined by

’Px”"'i’—z\ /Gt
sz"‘Pz) 42""@
\ ps > D3 43 >1q3

This transformation does not alter the equation p,;q, = 0. In CP?X CP? it has fixed
points: It follows from

plz)‘52~ q1 =Hq,
p: ==, gz =~ uq,
P3 =\D3 g3 =Uq;

with arbitrary complex A and g only that p, = p, = q, = ¢, = 0. These points, how-
ever, are not part of submanifold F,: For them the equation p,q; = 0 would have taken
the form p,q; =0, and p; or g; would have had to vanish also, which would be
impossible (all of the uniform coordinates cannot be zero simultaneously). The solu-
tion of the problem of a mapping with n, = 2 is again given by a projection: CP'/
Z,-F,/Z,. If uu,(z=u,/u,) are uniform complex coordinates in the space-time
CP', this mapping can be written

by =y g1 =" Uy
D2 =Uy q: T U,
p3=0 q:=0.

It is not difficult to see that this mapping is not continued to the mapping CP'/Z,— F,,
so it has half the topological charge, and the corresponding value is n, = 2.

To analyze an arbitrary manifold F,, it is convenient to use a different representa-
tion: in terms of the upper triangular complex (74 1)X(# + 1) matrices V:
Vi.=1V;=0fori>j (Ref. 7, for example). A Kahler potential is constructed from
the principal minors A,,...,A, of the matrix V¥V *: K =37_ | In A,. The symmetry of
the metric and the manifold F, and the actions of the sigma model constitute a trans-
formation under which K changes into a holomorphic or antiholomorphic function
when, for example, the A, are multiplied by the square moduli of analytic functions of
elements of V. An antiholomorphic Z, symmetry on F, can be specified in the follow-
ing way, for example: V— (AVB)'. Here the matrix 4 differs from the unit matrix by
virtue of the element 4, = + 1/ V,, ., and B by virtue of the replacement of the
22 block in the lower right corner by jo,. Multiplication by the matrix B inter-
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changes the last two columns and multiplies one of them by — 1. The prime means an
interchange of the last two elements of the lower row. For n = 1, for example, we have

0 -1, 1-1%, 1-1f
LT EC, gY=C, )

_ ¢ o
)~ (AVB) ={( K )(

V=( !
0 1 0

1§ § (
01 1 )

An operation marked with a prime understandably does not affect the first » principal
minors (n + 1) X (n + 1) of the matrix V'V ¥, so we can ignore it. Under this transfor-
mation we have VV*AVBB*V*A* =4 VV*A4 and A,—A,=A, for
i=1,.,n—1, and we have A, - (1/|V,,, |)A,, so that this is indeed an isometry.
This transformation sends the element ¥V, , , , into — 1/ V,, . |, so there are no fixed
points. Understandably, a projection specified by the formula V,, , =z (and for
which we otherwise have V), =0, i#J) is the configuration with n; = 2 which we are
seeking. For clarity we will write out the most explicit expressions for an antiholomor-

phic transformation in the cases n = 2,3;

b &q 1 7 -§_ 1l apy 1 oy -8
Fp:(01¢8)>(01-1/8); F3:(0 1 En)y~(01 7 ~-&_).
001 00 1 001 ¢ 001 —-1f
000 1 000 1

5. We have thus shown that the problem of binary fermion condensates in N =2
supersymmetric sigma models on flag manifolds can be solved within the framework
of a very simple generalization of the “toron idealogy” by an analysis of projections. It
has not been necessary to introduce singular factor manifolds. We have not carried out
a detailed analysis of other sigma models. In the general case, it would clearly not be
sufficient to restrict an analysis to simply projections and nonsingular manifolds.
However, there can hardly be any doubt that a solution can be found by this approach
for each specific case.

We are indebted to M. A. Shifman, who continuously stimulated our interest in
the problem of fermion condensates, and to A. R. Zhitnitskii and A. S. Shvarts for
discussions.
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