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An expression for the product of @ functions on Riemann surfaces is derived. This
expression can be used to represent a fermion determinant with an arbitrary
characteristic as an infinite product in the Schottky parametrization.

1. A key role is played in string theory by the chiral determinants which appear in
the expressions for the multiloop string partition functions and amplitudes. These
determinants were expressed in terms of & functions in Ref. 1; in particular, it was
shown there that the anomaly-free combination 4, (E) = (det 8,)'*det 6, ,(E) is
equal to ¢,0(a/B)(7), where det §; (E) is a chiral determinant in j-differentials on a
surface of type p with coefficients from the plane linear stratification E, «,, and 5,
where k = 1, p are real numbers which specify the splicing functions in this stratifica-
tions ($2), and the constant ¢, depends on only the surface type.

In the approach which was developed in Refs. 3, which makes use of a joining
Riemann surfaces with boundaries, the expression for 4, is “unitary” by construction;
i.e., we have ¢, = g~ ° ", where g is the constant of the three-string interaction. The
results, however, are written in the form of an infinite product is the Schottky parame-
trization. The relationship between the two representations for 4, follows from the
expression derived in this letter for an expansion of a € function in an infinite product
on a Riemann surface. This expression generalized the well-known expansion for type
1 (the Jacobi identity):

1

1 1
0(z)(7) =nH> , (1+ exp (2ﬂiz)qn 2y(1 4 exp(— 27riz)qn 2 X1-q™), (1)

where g = exp(27ir).

2. In the Schottky parametrization, a Riemann surface of type p is a Riemann
sphere, from which 2p disks D, , D}, k = 1, P have been cut out, and the boundaries of
the holes—circles S, , S, ,—are joined in pairs by fractionally linear transformations
¥i: S =¥ (S,). The transformations y, generate the group G, which is called the
“Schottky group.” An arbitrary of G can be written in the form

m
Y=y 'y,.N .
1 N
We define n, (y)—the number of entries of generators in y—by n, =2,, _m,.

Each element of Schottky group G is a dilatation in some coordinate system
which is found from the original coordinate system by means of a fractionally linear
transformation :

Vovo¥ ' (z) = K z.
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The number K, is the “factor” of element y.

As the 4, cycles on the joined Riemann surface £, we select the circles S, while
as the B, cycles we select certain curves which connect points P,eS, and
Vi (P )eS’y.

A stratification on £, is specified by the splicing functions on the 4 and B cycles;
for example, a stratification of j-differentials corresponds to splicing functions which
are equal to 1 on B cycles and (3, (2)) on 4, cycles.

Among the 2% spinor structures there is a basis structure which is associated
with the choice of 4 and B cycles described above. Its splicing functions are equal to 1
on B cycles and /9, (z) on A4, cycles; the choice of the sign of the root is matched in
the following way with the choice of B cycles: We fix a circle .S, and a point P, on it.
We consider a path y, (z,t), 0<#<1, in the group of fractionally linear transformation
which connects unity and y, (z) and which is of such a nature that the point
P, (1) =y, (P.t) moves along a B, cycle from P, to y, (P, ). The sign of the root

7« (2) is then reconstructed by continuity /3 (2,0) =1 = 1). The choice of the
sign of \/ 71 (2), k=1, p determines the sign of \/7/727 for any y from the Schottky
group and makes it possible to determine the correct sign of the K ,1,/ 2. The 2* spinor
structures on X, are specified by two p-dimensional integer vectors a and (3. The (a,
B) structure corresponds to splicing functions which are equal to /¢, (z) ( — 1) B,
on A, and ( — 1) on B,.

The stratification of j-differentials, -which has been multiplied in a tensor fashion
by an arbitrary plane stratification E corresponds to the splicing functions described
above with real vectors « and f3.

3. The basic result of this letter is a representation of a 8 function as an infinite
product on a Riemann surface:

1

=] m_ 1
' (1 4expQuiY-n)K %)
v m

=1

1i

V) ()

L
X (1+exp (- 2mY-m)K 7 X1 —-K™), 2)

where the product is calculated from the primitive classes of conjugate elements (an
element yeG is primitive if (K, | <1 and y = 74 for 7€G, it is primitive only for
g= + 1), 7, is the matrix of periods of surface =, calculated for the choice of 4 and
B cycles described above, and n = n(y).

The idea underlying proof (2) is that for real Y the left side of (2) is equal to
/Ip (E) for a stratification of E with o =0, B = 2Y (Ref. 1), and in this case expres-
sion (2) can be proved by integrating the energy-momentum tensor over moduli in the
Schottky representation (this was done by Martinec’ for Y = 0). The validity of (2)
then follows from analyticity in terms of the left and right sides of relation (2).

We can prove (2) for real Y:

detd  (E) = [DYDY exp(f YY), (3)
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where #(¢) is a (1/2)-differential with coefficients from a plane stratification of
E(E ). The holomorphic energy-momentum tensor of a system of this sort is
T=(1/2) (¢ — (812/)¢). Following Martinec, we find the vacuum expectation val-
ue of this tensor from a Green’s function:

1 1 -
- 1 1
(T —zlﬁnw [an Gz, w)— 3 0,G(z, w)- /z—w)z] , (4)

where
Glz,w) = (Ulz) yw)) -

The Green’s function G(z,w) has a single second-order pole and is determined unam-
biguously by its antomorphic properties:

Gz, vy (W)= exp QmiY,) v/ ¥ (W) G(z, ),

T (5)
G('yk(z), w)=exp(— 2ﬂiYk)\/7I'c(Z} Gz, w).
Hence
vV Y'(z) exp (= 27iY - n)
Glz,w) = Z ,

veo v(z) = W
where the sum is over all elements of the Schottky group. Pursuing the analysis by
Martinec’s approach, and using his result for (det d,)) 172 we find that A » (E) for real
Y is equal to the right side of (2) within a constant which depends on ouly the type.
The constant in relation (2) is established when we make the transition to a degener-
ate surface, K, —0. This completes our proof of expression (2) for real Y.
4. According to Knizhnik,' we have
A ~ A A
KP(E) = ¢, exp 1/4 (ina T, + 2mia+§)0 (1/2(8 + 'rpa)) (Tp), (6)

The substitution of infinite product (2) into (6) gives us a representation for A »(E) in
the Schottky parameterization. We will derive it by a joining method in a following
paper.
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