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Experimental results on the response of a charge density wave in a quasi-10 NbSe,
conductor to weak microwave radiation in the presence of a microwave pump and
a static bias field can be described satisfactorily by a classical model of a
overdamped oscillator when the response is averaged with the help of a distribution
of threshold fields.

The dynamics of a charge density wave (CDW) in static and alternating fields
has been the subject of many studies. Most of the experimental work on the nonlinear
dynamic response of a CDW has been carried out on trichalcogenides of transition
metals,'” NbSe, and TaS,. Most studies have examined the response of the CDW to
the application of two alternating signals at frequencies @ and 2w, with a static bias
field (the harmonic-mixer regime). The results of these studies are interpreted on the
basis of a tunneling model for the motion of a CDW; the concept of a photon-stimulat-
ed tunneling is invoked.® The experimental results agree in a quantitatively satisfactory
way with results calculated on the basis of this model in the megahertz range.”> The
analysis of the response of a CDW in the harmonic-mixer regime to a microwave
signal, which was carried out on the basis of the tunneling model in Ref. 1, does not
appear to be correct, since that model ignores the dispersion of the electrical conduc-
tivity of CDW in the microwave range.” The dispersion of the electrical conductivity
of a CDW over a broad frequency range (down to the millimeter range) can be
described by the classical model of an overdamped oscillator.® The experimental fre-
quency dependence of the electrical conductivity, o(w), can be fitted best by the
theoretical dependence by introducing a distribution function for the pinning frequen-
cy w,, which is used as a parameter in the oscillator model, and by averaging o(w)
over w, (Refs. 7 and 8).

We will apply this idea of averaging ¢(w) to the case of a nonlinear dynamic
response of a CDW to the application of microwave radiation. We will use the phe-
nomenological model of an overdamped oscillator.® We start with the assumption that
each chain in the quasi-1D conductor consists of a sequence of distinct, noninteracting
domains of a CDW, each characterized by a distinctive pinning frequency.® There is a
single-valued relationship between the pinning frequency w, and the threshold field of
the domain, E,,,. We introduce the distribution of the threshold field:
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where E* and #» are the parameters of the distribution.
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We will use (1) to find the response of the CDW to microwave radiation under
conditions such that two microwave signals with approximately equal frequencies w,
and @, and with different electric field amplitudes (E,<E,) are applied to the sample
along with a static bias field E,> E,. The response arises as a current at the difference
frequency ) = w, — w,, which causes a voltage drop V, cos({¢ + 1) across the load
resistance in the external circuit.

In formulating the problem we start with the assumption that the CDW responds
to the sum of the two signals with the approximately equal frequencies @, and w,, with
E,<E,, as if it were a single signal with a slowly varying amplitude®:

e(t) = ey (1 +msinQt), (2)
where
m = e,fe (3)

satisfies m« 1, o, ~w, = @, and e, and e, are the fields E, and E, after normalization
by division by the threshold field E,;,. This formulation of the problem corresponds to
the experimental conditions of Ref. 10. The equation of motion of the CDW is written
as follows on the basis of the model of Ref. 6 with our expression (2):
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where 8 is the phase of the CDW, w,, = w37, and 7 is a phenomenological damping
constant. Under the conditions m <1 and Q <o, Eq. (4) has the solution

6 =90 +0,snQt.

The current of the CDW is determined by the derivative d6 /dt, which must be
averaged over the fast variable processes. This problem was solved in Ref. 11 in order
to find the response of a CDW, in the form of a current increment Aj,,, to the
application of a weak continuous microwave signal. Substituting a modulated ampli-
tude of the microwave signal, e,, = e, (1 + m sin (}¢) into the expression for Ajonw,
and expanding it in a series in the small parameter m, we can extract the variable
component of the CDW which varies at the frequency :

mef 1

jﬂ = ob‘Ethr —— f(w) sin 2t eo> 1, (5
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where f(@) = (w/wy)*[1 + (wr) 2], and o, is the conductivity of the CDW which
corresponds to the maximum of the Re o(w) dependence.

We switch from the current density to the current i, = j,, S in (5), and we switch
from the field to the voltage V' = E! (/ and S are the length and cross-sectional area of
the sample). As the current i, flows through load resistance R,, the total voltage
across the sample is Vs =V, — ig R, . We now substitute Vs for ¥, in (5). Solving the
resulting equation for the current i, we find its amplitude
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where V,, V|, V,, and V,,,, are the bias voltage, the voltage amplitudes of the alternat-
ing signals, and that of the threshold voltage, respectively; R; = R, R,/(R., + R,),
where R, is the resistance of the external load; R, is the electrical conductivity of the
sample which is a consequence of one-particle excitations; and R, is the resistance
determined by the conductivity o,.

It follows from (6) that the current I, is determined by a voltage source with an

emf V= (V,V,/2V,)f(w) and by the internal resistance R, = R,/ V5 — V5. / V..
The voltage amplitude of the response, V, = IoR,, is conveniently written in the
following form, where we are making use of (6):

ViV,
Vn = 2V f(w)(p(E(), Ethr)’ (7)
0
where
[
} 0 Ey< E,,
w(Eo, Ey,. ) = (8)
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ap =R, /R,.

Function (8) is discontinuous at E, = E,,,, while the experimental response is a
smooth function of E,. We average response (7) over the set of domains of the CDW,
which differ in the value E,,,, making use of distribution function (1):

ViV,

V =
2 w*

f(w) ¢( ELE,, ), (9

where
xMe*

.
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x= E, |E*, . a=E,/E", . V*=E",

P [43
¢( E()’Ethr ) = R dx ’ (10)
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Let us compare this result with experiment.'® Figure 1 shows the experimental
behavior of the response of the CDW to microwave radiation with a power of 1078 W
with a frequency of 3.3 GHz for a NbSe; sample at 7= 35 K for various pump power
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FIG. 1. Normalized voltage amplitude of the response of a CDW to microwave radiation versus the bias
voltage. Solid line—theoretical; points—experimental, at various pump levels (microwatts): O) 40; @) 110,
A) 200. The frequency of the response voltage is /27 = 36 MGz.

levels P,,..,. The amplitude of the response for each level of P, has been normal-
ized to its maximum value. Shown by a solid line here is theoretical function (9),

found through a numerical integration of (10) and normalized to a unit maximum.

For a quantitative estimate of the response, we adopted the experimental value
g =1and flw) = (v,,/®)? with o.,/27 = 0.1 GHz (Ref. 12). As the adjustable
parameters we used # =2 and V'* = 11 mV. The measured static breakdown voltage
of the sample is V,,, = 6 mV. The absolute values of the amplitude of the measured
voltage, V,,, and of that calculated from expression (9) agree within one order of
magnitude.

In summary, the introduction of a statistical distribution of threshold fields has
found experimental support. The dynamics of a CDW in the nonlinear regime is
described satisfactorily on the basis of a phenomenological model of a classical over-
damped oscillator.

We wish to thank D. I. Kaparkov for participation in the analysis of the theoreti-
cal and experimental results.
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