## Soliton diffusion coefficient

B. A. Ivanov and A. K. Kolezhuk

Institute of Metal Physics, Academy of Sciences of the Ukrainian SSR

(Submitted 6 March 1989)

Pis'ma Zh. Eksp. Teor. Fiz. 49, No. 9, 489-491 (10 May 1989)

A soliton gas in systems which are nearly exactly integrable is characterized by two fundamentally different diffusion coefficients. The coefficient  $D_*$  describes a process in which the coordinate of the soliton becomes stochastic against the background of a motion at a constant velocity. The coefficient D, in contrast, is related to the viscosity of the soliton,  $\eta$ , by the Einstein relation. The value of this coefficient, in contrast with  $D_*$ , is nonzero only in systems which have a disrupted integrability. It is important to take both of these coefficients into account in describing experiments.

Research on the central peak in the susceptibility  $\chi(q,\omega)$  by the method of inelastic neutron scattering has demonstrated the reality of soliton excitations of quasi-1D ordered media (ferromagnets, antiferromagnets, ferroelectrics, etc.<sup>1,2</sup>). The first theoretical papers, <sup>3,4</sup> which used the approximation of a free motion of solitons, predicted a Gaussian shape for this central peak:  $\chi(q,\omega) \sim \exp\{-m_*\omega^2/2Tq^2\}$ . This prediction contradicts the experiments of Ref. 5, which revealed a Lorentzian shape. Such a shape is characteristic of a stochastic (diffusive) motion of particles, <sup>6</sup> and one is led to ask whether the motion of the soliton becomes stochastic as a result of an interaction with a reservoir of quasilinear perturbations (for definiteness, magnons). The first calculation at an elementary level was carried out in Refs. 7 and 8, for a  $\varphi^4$  model. That calculation predicted a diffusion coefficient D proportional to  $\overline{W}$ , which is the average probability for the scattering of magnons by a soliton. According to Refs. 7 and 8, the diffusion coefficient obeys  $D \sim T^2$ . Corresponding results  $(D \sim \overline{W}, D \sim T^2)$  have been derived for an exactly integrable sine-Gordon model. <sup>9</sup>

The results of Refs. 7-9 came under criticism in Refs. 10-13, on the basis of the following arguments. 1. The Einstein relation tells us that we have  $D=T/\eta$ , where  $\eta$  is the soliton viscosity coefficient which results from soliton-magnon collisions, so we have  $D\sim 1/\overline{W}$  and  $D\to\infty$  as  $T\to0$ . 2. In an exactly integrable system of the sine-Gordon type, there is no irreversibility; in particular, we have  $\eta=0$  and  $D=\infty$ . These arguments are convincing, but theories of the types in Refs. 7-9 give good descriptions of the experimental data. 5 Consequently, the diffusion of solitons and the shape of the central peak in the susceptibility remain open questions.

Let us consider a soliton with a coordinate x(t) which is interacting with magnons. We denote by  $\alpha_k$  and  $\omega_k$  the magnon amplitudes and frequencies (we are restricting the calculation to the classical case), where k is the momentum of the magnon (everywhere, we are setting  $\hbar=1$ ). Equations for x and  $\alpha_k$  can be written in the form

$$m_{*}\ddot{x} = \delta H_{int}/\delta x, \quad i\dot{\alpha}_{k} = \omega_{k}\alpha_{k} + \delta H_{int}/\delta \alpha_{k}^{*},$$
 (1)

where  $m_*$  is the mass of the soliton,  $f \equiv df/dt$ , and  $H_{\text{int}}$  is the Hamiltonian (more precisely, Routh function) which describes the interaction of the soliton with the magnons. For a wide range of systems which are nearly integrable [the sine-Gordon equation,  $^{10,13}$  the  $\varphi^4$  system (Ref. 13), a ferromagnet,  $^{14}$  etc.],  $H_{\text{int}}$  can be written

$$H_{int} = \sum_{12} (\dot{x} T_{12} + \epsilon U_{12}) e^{i(k_2 - k_1)x(t)} \alpha_1^* \alpha_2 + \dots$$
 (2)

Here  $k_1 \equiv 1$ ; we have an amplitude  $T_{12} \neq 0$  even for exactly integrable systems; and the parameter  $\epsilon \ll 1$  determines the rate at which the exact integrability is disrupted (for example, in a transition from the sine-Gordon model to the double sine-Gordon model, of the form  $\ddot{\varphi} - \varphi'' + \sin\varphi + \epsilon \sin 2\varphi = 0$ ). The main property of the amplitudes is  $T_{12} = 0$  at  $\omega_1 = \omega_2$ , and in this case we have  $U_{12} \neq 0$  (Refs. 10, 13, and 14). In writing (2) we omitted terms of the type  $\alpha_1\alpha_2$ ,  $\alpha_1^*\alpha_2\alpha_3$ , etc., and also terms containing  $\dot{x}^2$  and  $\dot{x}^3$  (we are assuming that the velocity of the soliton is low).

By virtue of (1) we have  $m_*\ddot{x} = f(x,\{\alpha_k\}), f = -\delta H_{\rm int}/\delta x$ ; i.e., the force acting on a soliton is a functional of  $\alpha_k$ . Working in a perturbation theory in a  $H_{\rm int}$  (i.e., in x and  $\epsilon$ ), we can write an explicit expression for f(t). In the leading approximation we have  $\alpha_k(t) = c_k \exp(-i\omega_k t)$ , and f(t) is a random force with  $\langle f(t) \rangle = 0$  [when we take an average over the reservoir of magnons, we use the customary rules  $\langle c_k \rangle = 0$ ,  $\langle c_1^* c_2 \rangle = (T/\omega_1)\delta_{12}$ . Here T is the temperature (we are assuming  $\omega_k \leqslant T \leqslant E_0$ , where  $E_0$  is the energy of the soliton). For the correlation function of the random force f we find, in the leading approximation in x and  $\epsilon$ ,

$$\langle f(t)f(0)\rangle_0 \approx 2T\eta\delta(t) + 2D_*m_*^2(-\delta(t)), \tag{3}$$

where

$$\eta = \pi T \epsilon^2 \sum_{12} (k_1 - k_2)^2 |U_{12}/\omega_1|^2 \delta(\omega_1 - \omega_2), \tag{4}$$

$$D_{*} = (\pi T^{2}/m_{*}^{2}) \sum_{12} |T_{12}/\omega_{1}|^{2} \delta(\omega_{1} - \omega_{2}).$$
 (5)

The coefficient  $\eta$  in (3) has the meaning of the magnetic viscosity of a kink, and we have the value  $\eta=0$  at  $\epsilon=0$  (this result is actually a consequence of the property  $T_{12}=0$  at  $\omega_1=\omega_2$ , i.e., a result of the reflectionless nature of the collisions of a magnon and a soliton in exactly integrable systems). The contribution  $U_{12}$  describes the momentum transfer in the course of collisions and leads to both viscosity [in the next higher order of the perturbation theory in  $\epsilon$  we have  $\langle f(t) \rangle = -\eta \dot{x} \neq 0$ ] and an ordinary diffusion, with coefficient  $D=T/\eta$ . This diffusion determines a Brownian motion of the soliton. The coefficient  $D_*$  in the term with the second derivative of the  $\delta$ -function in the correlation function, on the other hand, describes an effect which we will call " $D_*$  diffusion." The reason for this effect is that even in an exactly integrable system a soliton undergoes a displacement along the coordinate as it interacts with a magnon. Since collisions occur at random times, the effect is again to make the motion of the soliton stochastic, but against the background of a motion with a constant velocity. The second term in (3) of course does not contribute to the viscosity; the form of  $D_*$  corresponds to the results of Refs. 7-9.

The dynamics of the soliton can thus be described by the equation

$$m_{*}\ddot{x} + \eta \dot{x} = f(t), \tag{6}$$

where f is a random process (for simplicity, we assume it to be Gaussian) with correlation function (3). If only the D diffusion ( $D_* = 0$ ) or only the  $D_*$  diffusion ( $\eta = 0$ ) is taken into consideration, we easily find from (6)

$$\langle (x(t) - x(0))^2 \rangle_D \to 2Dt \quad \text{at} \quad t \gg m_*/\eta; \ \langle (x(t) - x(0) - x(0)t)^2 \rangle_D = 2D_*t. \tag{7}$$

If both types of interactions are taken into consideration at early times  $(t < \tau_r = m_*/\eta)$ , where  $\tau_r$  is the viscous relaxation time), the  $D_*$  diffusion "operates"; at late times  $(t > \tau_r)$ , the soliton executes an ordinary Brownian motion.

Let us find the shape of the central peak determined by the soliton component of the imaginary part of the susceptibility,  $\chi''(q,\omega)$ . We know 15,16 that  $\chi''(q,\omega)$  is proportional to the integral  $I(q,\omega) = 2\int_0^\infty dt \cos \omega t \exp[-(q^2/2)\langle \Delta x^2(t)\rangle]$ , where  $\Delta x(t) = x(t) - x(0)$ . From this formula we find, in the limit  $D_* \gg D$ .

$$I(q, \omega) \approx \frac{2D_*q^2}{\omega^2 + (D_*q^2)^2} (1 - e^{-D_*q^2}\tau_r) + \frac{2Dq^2}{\omega^2 + (Dq^2)^2} e^{-3D_*q^2}\tau_r/2.$$
 (8)

In the (more realistic) opposite case  $D_* \ll D$ , the asymptotic behavior is more complicated, but for extremely small and large values of q it is qualitatively the same as (8). Under the conditions  $q < 1/l_c$  ( $l_c = \sqrt{D\tau_r}$  is the mean free path) and  $q > 1/l_c^* \equiv \sqrt{T/m_*D_*^2}$ , Lorentzian peaks form with diffusion coefficients D and  $D_*$ , respectively. In the intermediate region, the shape of the central peak is reminiscent of a Gaussian peak, which would be characteristic of free motion. Estimates of the characteristic values of  $(1/l_c)$  and  $(1/l_c^*)$  for a sine-Gordon model with the standard parameter values and  $\epsilon = 0.1$  and  $T \sim E_0$  yield  $10^{+5}$  cm<sup>-1</sup> and  $10^{+7}$  cm<sup>-1</sup>, respectively. Consequently, the contributions of the D diffusion and  $D_*$  diffusion can be distinguished in a neuton experiment if the scattering angle is chosen appropriately. The contribution of D diffusion can also be found from the absorption of sound or electromagnetic waves with  $q < 1/l_c$ .

We wish to thank V. G. Bar'yakhtar, I. E. Dzyaloshinskii, and A. S. Kovalev for useful discussions. We also thank Yu. N. Mitsai for collaboration.

<sup>&</sup>lt;sup>1</sup>J. Bernasconi and T. Shneider (eds.), *Physics in One Dimension*, Springer-Verlag, New York, 1981.

<sup>&</sup>lt;sup>2</sup>Yu. A. Izyumov, Usp. Fiz. Nauk 155, 553 (1988) [Sov. Phys. Usp. 31, 689 (1988)].

<sup>&</sup>lt;sup>3</sup>H. J. Mikeska, J. Phys. C. 11, L29 (1978).

<sup>&</sup>lt;sup>4</sup>H. J. Mikeska, J. Magn. Magn. Mater. 13, 35 (1979).

<sup>&</sup>lt;sup>5</sup>J. P. Boucher, L. P. Regnault, R. Pynn et al., Europhys. Lett. 1, 415 (1986).

<sup>&</sup>lt;sup>6</sup>A. Isihara, Statistical Physics, Academic, New York, 1971.

<sup>&</sup>lt;sup>7</sup>Y. Wada and T. R. Schrieffer, Phys. Rev. B 18, 3897 (1978).

<sup>&</sup>lt;sup>8</sup>H. Ishiuchi and Y. Wada, Prog. Theor. Phys. 69, 242 (1980).

<sup>&</sup>lt;sup>9</sup>K. Sasaki and K. Maki, Phys. Rev. B 35, 257 (1987).

- <sup>10</sup>V. G. Bar'yachtar, I. V. Bar'yachtar, B. A. Ivanov, and A. L. Sukstansky, in: Proceedings of the Second International Symposium on Selected Topics in Statistical Mechanics, Dubna, 1981.
- <sup>11</sup>C. Kunz, Phys. Rev. A 34, 510 (1986). <sup>12</sup>C. Kunz, Phys. Rev. B **34**, 8144 (1986).
- <sup>13</sup>V. G. Bar'yakhtar, B. A. Iyanov, A. L. Sukstanskiĭ, and E. V. Tartakovskaya, Teor. Mat. Fiz. 74, 46 (1988).
- <sup>14</sup>A. S. Abyzov and B. A. Ivanov, Zh. Eksp. Teor. Fiz. 76, 1700 (1979) [Sov. Phys. JETP 49, 865 (1979)].

Translated by Dave Parsons

<sup>15</sup>M. A. Collins, A. Blumen, J. F. Currie, and J. Ross, Phys. Rev. B 19, 3630 (1979).

<sup>16</sup>B. A. Ivanov and A. K. Kolezhuk, Preprint ITF-88-166R, Institute of Theoretical Physics, Kiev, 1988.