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A soliton gas in systems which are nearly exactly integrable is characterized by two
fundamentally different diffusion coefficients. The coefficient D . describesa
process in which the coordinate of the soliton becomes stochastic against the
background of a motion at a constant velocity. The coefficient D, in contrast, is
related to the viscosity of the soliton, 7, by the Einstein relation. The value of this
coefficient, in contrast with D ., is nonzero only in systems which have a disrupted
integrability. It is important to take both of these coefficients into account in
describing experiments.

Research on the central peak in the susceptibility y (g,0) by the method of inelas-
tic neutron scattering has demonstrated the reality of soliton excitations of quasi-1D
ordered media (ferromagnets, antiferromagnets, ferroelectrics, etc."?). The first theo-
retical papers,>* which used the approximation of a free motion of solitons, predicted a
Gaussian shape for this central peak: y(gq,0) ~exp{ — m.®*/2Tq*}. This prediction
contradicts the experiments of Ref. 5, which revealed a Lorentzian shape. Such a
shape is characteristic of a stochastic (diffusive) motion of particles,® and one is led to
ask whether the motion of the soliton becomes stochastic as a result of an interaction
with a reservoir of quasilinear perturbations (for definiteness, magnons). The first
calculation at an elementary level was carried out in Refs. 7 and 8, for a ¢ * model.
That calculation predicted a diffusion coefficient D proportional to W, which is the
average probability for the scattering of magnons by a soliton. According to Refs. 7
and 8, the diffusion coefficient obeys D~ T2 Corresponding results (D~ W, D~T?)
have been derived for an exactly integrable sine-Gordon model.”

The results of Refs. 7-9 came under criticism in Refs. 10-13, on the basis of the
following arguments. 1. The Einstein relation tells us that we have D = T/, where
is the soliton viscosity coefficient which results from soliton-magnon collisions, so we
have D~1/W and D— « as T—0. 2. In an exactly integrable system of the sine-
Gordon type, there is no irreversibility; in particular, we have 7 =0 and D = «.
These arguments are convincing, but theories of the types in Refs. 7-9 give good
descriptions of the experimental data.” Consequently, the diffusion of solitons and the
shape of the central peak in the susceptibility remain open questions.

Let us consider a soliton with a coordinate x(¢) which is interacting with mag-
nons. We denote by ¢, and @, the magnon amplitudes and frequencies (we are re-
stricting the calculation to the classical case), where k& is the momentum of the mag-
non (everywhere, we are setting # = 1). Equations for x and @, can be written in the
form

mx =8H p

8%, ie=w i +8H, [Sak, (D
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where m. is the mass of the soliton, f=df/dt, and H,, is the Hamiltonian (more
precisely, Routh function) which describes the interaction of the soliton with the

magnons. For a wide range of systems which are nearly integrable [the sine-Gordon
10,13

equation, the ¢ * system (Ref. 13), a ferromagnet,' etc.], H,,, can be written
Hyy = I 6Ty +eUpy)ellbs kX llgpa, + 2)

Here k,=1; we have an amplitude 7',,5£0 even for exactly integrable systems; and the
parameter €< 1 determines the rate at which the exact integrability is disrupted (for
example, in a transition from the sine-Gordon model to the double sine-Gordon mod-
el, of the form ¢ — ¢ ” -+ sing -+ esin2g = 0). The main property of the amplitudes is
T,, = 0 at ®, = @,, and in this case we have U,,7#0 (Refs. 10, 13, and 14). In writing
(2) we omitted terms of the type a,a,, a*a,a;, etc., and also terms containing x> and
x* (we are assuming that the velocity of the soliton is low).

By virtue of (1) we have m.x = f(x,{a,}), f= — 6H,,,/5x; i.e., the force acting
on a soliton is a functional of @,. Working in a perturbation theory in a H,,, (i.e., in X
and €), we can write an explicit expression for f(#). In the leading approximation we
have a, (t) = c,exp( — iw, #), and f(r) is a random force with {(/(#)) =0 [when we
take an average over the reservoir of magnons, we use the customary rules (¢, ) =0,
(c*c,) = (T /w,)8,,- Here T is the temperature (we are assuming w, €< T < E,, where
E, is the energy of the soliton). For the correlation function of the random force f we
find, in the leading approximation in x and ¢,

CAHIAO) Yo ~ 2Tn8(t) + 2D i (~5(1)) 3
where

n=1Te" I (k1 —k2)*| Urz/w; *8(w1 = w2), 4

D*=(1rT2/m:)F2|T12/w1 P&(w; —ws)- (5)

The coefficient 7 in (3) has the meaning of the magnetic viscosity of a kink, and we
have the value 7 =0 at ¢ =0 (this result is actually a consequence of the property
T,=0 at @, = w,, i.e.,, a result of the reflectionless nature of the collisions of a
magnon and a soliton in exactly integrable systems). The contribution U,, describes
the momentum transfer in the course of collisions and leads to both viscosity [in the
next higher order of the perturbation theory in € we have (f(¢)) = — 7x+#0] and an
ordinary diffusion, with coefficient D = T /7. This diffusion determines a Brownian
motion of the soliton. The coeflicient D. in the term with the second derivative of the
S-function in the correlation function, on the other hand, describes an effect which we
will call “D . diffusion.” The reason for this effect is that even in an exactly integrable
system a soliton undergoes a displacement along the coordinate as it interacts with a
magnon. Since collisions occur at random times, the effect is again to make the motion
of the soliton stochastic, but against the background of a motion with a constant
velocity. The second term in (3) of course does not contribute to the viscosity; the
form of D. corresponds to the results of Refs. 7-9.
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The dynamics of the soliton can thus be described by the equation
mx+nx =flt), (6)

where f'is a random process (for simplicity, we assume it to be Gaussian) with correla-
tion function (3). If only the D diffusion (D. = 0) or only the D. diffusion (5 = 0) is
taken into consideration, we easily find from (6)

(.()‘c(t) -~ x(0))? _)b ~>2Dt at t>m,/n; {(x(t)—x(0) —:E(O)t)2 ’p = 2D t. (7)

If both types of interactions are taken into consideration at early times (¢ <7, = m./
17, where 7, is the viscous relaxation time), the D, diffusion “operates”; at late times
(t>7,), the soliton executes an ordinary Brownian motion.

Let us find the shape of the central peak determined by the soliton component of
the imaginary part of the susceptibility, y” (g,@). We know'>'¢ that y” (g,@) is pro-
portional to the integral I(q,w) =2§¢ dtcos wtexp| — (¢°/2){Ax*(¢))], where
Ax(t) =x(t) — x(0). From this formula we find, in the limit D. > D,
2D,.q* 2Dq?

wd (1~e_D*qur)+ q

T _ et ~3DWgr 2
W' +(D,q") W + g T ®

I{q, w)~

In the (more realistic) opposite case D. €D, the asymptotic behavior is more
complicated, but for extremely small and large values of ¢ it is qualitatively the same

as (8). Under the conditions g<1/l. (I, =.Dr, is the mean free path) and

g>1/1*=JT/m.D3%, Lorentzian peaks form with diffusion coefficients D and D.,
respectively. In the intermediate region, the shape of the central peak is reminiscent of
a Gaussian peak, which would be characteristic of free motion. Estimates of the char-
acteristic values of (1//.) and (1/1*) for a sine-Gordon model with the standard
parameter values® and € = 0.1 and T~E, yield 107> cm ' and 10*7 cm™", respec-
tively. Consequently, the contributions of the D diffusion and D. diffusion can be
distinguished in a neuton experiment if the scattering angle is chosen appropriately.
The contribution of D diffusion can also be found from the absorption of sound or
electromagnetic waves with g < 1/1,.
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