Electron paramagnetism in antiferromagnets
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The nature of the degeneracy of band and localized electron states in an
antiferromagnet and their behavior in a magnetic field are analyzed. Structural
features have been found in the g-factor: At the edge of the magnetic Brillouin
zone, a transverse field does not lift the degeneracy, while localized states at defects
are completely nondegenerate.

Measurements of the magnetic susceptibility constitute one of the basic methods
for a primary characterization of the electronic properties of materials. Information on
the state density at the Fermi level, Ny, is extracted from the Pauli susceptibility y,,
and the density of localized states, v, is found from the Curie law:

Xp = gzNF Xe © gzb’/T. ()

Here T is the temperature, and g is the Zeeman splitting factor ( 4 gH; the Bohr
magneton is 1). For a weak spin-orbit coupling it is natural to assume g = gy~ 2.

In this letter we show that spin paramagnetism has several distinctive features
when the electrons are studied in an antiferromagnetically ordered crystal. These ef-
fects should be manifested in several magnetic semiconductors,’? including high-tem-
perature superconducting compounds of the La,CuO, or YBa,Cu;0, type in an insu-
lating phase, quasi-1D materials with a.spin density wave, and other systems with an
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intrinsic antiferromagnetic state of band electrons.® We formulate several model-inde-
pendent assertions which can be derived rigorously by a group-theory analysis* or
which can be found in the weak-coupling model for a spin density wave.

We first consider band states for excitations or for small electron (or hole) pock-
ets above the insulator (Hubbard) gap caused by the antiferromagnetic order. It can
be shown that the g-factor splits into two components, g; and g, , for the different
directions of the field H = (H (HL) with respect to the antiferromagnetic order vec-
tor s. The components g, are always different and generally depend on the position of
the wave vector k in the Brillouin zone. The function g (k) generally does not have
singularities, and in the weak-coupling model we have g; (k) = g,. However, g, (k)
does exhibit a characteristic property: We have g, (k) = 0 on the set of wave vectors
{k} which satisfy the condition that the vectors k and (k + Q) are equivalent in the
symmetry of the nonmagnetic lattice. Here Q is the magnetic order vector. For an
antiferromagnet of the type of a doubling of the period of a square lattice, we would
have Q = (7, + 7). Consequently, g, (k) vanishes at the boundary of the magnetic
Brillouin zone, i.e., for electron and hole states near the edge of the gap opened by the
formation of the antiferromagnetism. Upon a deviation by a wave vector 8k, or 6k,
from the point of the common position at the boundary of the magnetic Brillouin zone,
we have g, «6k&,, and at singular points with a Van Hove singularity we have
g, 8k, 8k,&5, where &, is the coherence length for an antiferromagnetic state.

These results can be derived in an elementary way in the weak-coupling model
(Ref. 3, for example) through a diagonalization of the obvious Hamiltonian

e(k) + H&® Aso 2
Asd ek+Q) +H5"/

where €(k) is the spectrum in the metallic phase, and 2A is the gap in the spectrum for
the antiferromagnetic phase. We find an equation for the spectrum:

(e~ nk)— Hyo) — (¢00 — H,0¥ —A% = 0 3

1 ' 1
10 = ~le@)+ ek+Q],  ER) = —le@) - ek+ Q] (4)

H, = s(Hs), H = H-H,

1

At the boundary of the magnetic Brillouin zone we always have £(k)=0, and
with exact nesting, even in 1D systems, the relation 7(k)=0 also holds. We see that
the assertions formulated above may apply not only for the boundary of the spin zone
but also at points of random degeneracy, &(k) = 0.

Equations (3) and (4) take a particularly simple form in the case of a 1D system
near the edge of the spectrum:

1 —.
@) = A+H T + 55 Orat H o). (5)
We see that H, splits the spectrum hot in terms of energy, as an ordinary Zeeman
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term would, but in terms of momentum, shifting the minimum of the zone to the
points + H, /vy. In other words, a transverse magnetic field is equivalent to a disrup-
tion of inversion. For non-1D systems with nesting, the value of ¢ in (5) is understood
as the deviation from the normal to the boundary of the magnetic Brillouin zone.

A pronounced suppression of the static paramagnetism is seen at large deviations
of the direction of H from that of s. Even at small deviations, however, we should see
an anomalous broadening and then a loss of the ESR signal as a result of a dispersion
of the resonant frequency in terms of the electron momentum. This effect will occur in
both the metallic and thermally activated concentration regimes. Note also the inter-
play between the static orbital and resonant spin effects due to the change in the g-
factor along the constant-energy path of spectrum (5).

Impurity states. We turn now to localized electron states at defects in an antiferro-
magnetic lattice. With an eye on the CuO, plane in a high-temperature superconduct-
ing compound, we can consider the cases of (I) site-site and (II) single-site defects
corresponding to a replacement of the oxygen and the copper. In the site representa-
tion for model (2) the system is described by the Hamiltonian

n’?n tm,m)c c  + i? [A(m)e’ QP cn so—')cn +hoc ]

(6)
tm,m)=r{n—-m)+7@m,m), n= (n, ny), Am) =A+8(n),
where (1) is the Fourier transform of e(k) in (2), and 7 and § describe the defects of
types I and IL It turns out that in case I no bound states form. In case II, bound states
appear in the case of nesting or near saddle points. Elementary calculations show that
the depth of a bound state, w, can be found from the condition
2
A28 aip, AdewE M
€ w Aw
The expression for 4 in (7) refers to a system with a saddle point in €(k). In general,
we would have 4=const« 1. The quantity 4 determines the strength of a defect:
6(n) = — A8,,- In the present context, the fact that the degeneracy of the localized
states is lifted even without a magnetic field is important. The levels of these states,
+ (A — w), are positioned symmetrically in the ( — A, + A) gap; each corresponds
to only a single projection onto the s axis. The absence of a degeneracy is explained on
the basis that in the presence of a defect of type II the system loses its symmetry under
transformations RT and RI (R is time reversal, T is translation, and [ is inversion),
which are responsible for an analog of Kramers degeneracy for a pure system and for a
defect of type 1. Consequently, these states will not contribute to the magnetic suscep-
tibility at all. The observation of a Curie law for y in (1) characterizes the concentra-
tions of only those defects which are unrelated to the antiferromagnetic subsystem.
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