Motion of vortices in bridge structures made from high- T_c superconductors L. É. Amatuni, A. A. Akhumyan, K. I. Konstantinyan, R. M. Martirosyan, and G. A. Ovsyannikov¹⁾ Institute of Radiophysics and Electronics, Academy of Sciences of the Armenian SSR (Submitted 13 January 1989; resubmitted 5 April 1989) Pis'ma Zh. Eksp. Teor. Fiz. 49, No. 10, 559–562 (25 May 1989) A coherent motion of vortices in bridge structures made from high- T_c superconductors has been observed when a transport current flows through them and when a microwave radiation in the millimeter wavelength range is applied to them. The manifestation of Josephson properties in bridge structures made from high- T_c metal oxide superconductors with a constriction, whose size is much greater than the coherence length (ξ), is explained by several authors¹⁻³ by the presence of weak coupling between the grains of the high- T_c superconductor. It is assumed that only one Josephson grain junction is operating in a bridge structure. We have shown experimentally that the phenomena characteristic of Josephson junctions, e. g., the appearance of current steps on the current-voltage characteristics which stem from the synchronization of the self-radiation of a Josephson junction by an external signal, may occur in a bridge structure made from a high- T_c superconductor because of the presence of another physical mechanism for the generation of an alternating current in a junction; specifically, because of the coherent motion of the fluxoids (vortices) caused by the transport current I and by the application of microwave radiation. We note that these phenomena in bridge structures made from ordinary superconductors (In, Sn, etc.) have been studied extensively.^{4,5} The distinctive features of the bridge structures made from high- T_c superconductors is that in them not only the Abrikosov vortices^{4,5} but also the Josephson vortices and hypervortices⁶ can be formed and set in motion. The test samples were square bars made from a Y-Ba-Cu-O ceramic measuring $6\times2.5\times0.5$ mm, at the center of which the constriction was cut out: a bridge structure of length L=150-200 μ m, width W=150-200 μ m, and thickness $d\leqslant100$ μ m. The grain size of the ceramic was $a\approx1$ μ m. The I-V characteristic of the samples was measured by the four-contact method in the autonomous regime and with an imposition of a microwave radiation with various frequencies over a broad temperature interval T from 300 K to 4.2 K. Figure 1 shows the I-V characteristics of one of the test samples for various temperatures. We see that the behavior of the I-V characteristic of a bridge structure is typical of a weak coupling with a direct conductivity: There is no hysteresis over a broad temperature interval, and at high voltages, $V \gtrsim 1$ mV, we see an appreciable excess current; i.e., the I-V characteristic reaches a plateau which is displaced relative to $V = IR_N$ by an amount $I_{ex} \gtrsim I_c$. At low temperatures, $T \lesssim 17$ K, the I-V characteristic exhibits several sloping current plateaus. It should be pointed out that the I-V FIG. 1. The I-V characteristics of the bridge structures at various temperatures T: 1—25.1 K; 2—23.5 K; 3—22.6 K; 4—17.3 K; 5—5.0 K; 6—4.2 K. The inset shows the experimental $I_c(T)$ dependence normalized relative to I_{c0} (T=4.2~K). The solid line represents the theoretical dependence for the Josephson tunnel junctions. characteristic of a bridge structure, in contrast with the classical Josephson junctions, is asymmetric relative to I=0 (not shown in Fig. 1) and that the degree of asymmetry changes with changing temperature. The temperature dependence of the critical current I_c of a bridge structure is shown in the inset in Fig. 1. The solid line represents the theoretical dependence $I_c(T)$ of a Josephson tunnel junction, determined on the basis of the BCS theory. We see that the experimental $I_c(T)$ dependence differs dramatically from the theoretical dependence. The experimental results differ even greater from the theoretical results of Kulik and Omel'yanchuk for a Josephson junction with a direct conductivity. In several experimental studies (see, e.g., Refs. 9-11) such $I_c(T)$ curves for the test samples have been explained in terms of the granular structure of the high- T_c superconducting materials. Figure 2 shows the I-V characteristics of the same bridge structure for various values of the applied microwave power P_e of frequency $f_c = 36$ GHz at 4.2 K. As can be seen in the figure, an increase in P_c leads to a decrease in I_c and to the appearance of structural features on the I-V curve in the form of horizontal current steps. The FIG. 2. The I-V characteristics of the bridge structure at 4.2 K for various microwave power levels with microwave frequency $f_c = 36$ GHz (1—without microwave radiation; 2–5—in a microwave field with various attenuations): 2–40 dB; 3–35 dB; 4–26 dB; 5–15 dB. The arrows show the current steps n/m = 1/2, 1, 2, 3, 4, and 5. voltages corresponding to the current steps on the I-V characteristics are related to the frequency f_e by the Josephson relation $V_{n,m}=(n/m)\,(hf/2e)$, where n is an integer corresponding to the synchronization of self-radiation of the bridge structure by the nth harmonic of the applied signal, and m is an integer corresponding to the synchronization of self-radiation by the mth subharmonic. In contrast with an ideal Josephson junction, the I-V characteristics of the bridge structures we have studied exhibit subharmonic steps as a result of the application of microwave radiation, suggesting that the current-phase relation does not have a sinusoidal shape. 12 The half step (n=1, m=2) appears at much lower values of P_e than those at which the main steps appear (m=1). As P_e is raised, we see a more pronounced asymmetry of the I-V characteristic with respect to current than that which occurs as a result of varying the temperature. The P_e dependence of I_e and of the harmonic steps differs considerably from the quasi-oscillatory dependence characteristic of Josephson junctions, I_e but is, on the whole, similar to that observed earlier for moving Abrikosov vortices in long bridge structures made of tin. I_e The vortical nature of the nonlinearity of the bridge structure in the granular high- T_c superconductors is consistent with the plot of I_c vs the static magnetic field H_e obtained by us. A dependence of the type $\sin H_e/H_e$, which is characteristic for Josephson junctions, ¹² was not observed, however. A pronounced hysteresis was observed when H_e was varied inversely. Such a behavior of $I_c(H)$ and the asymmetry of the I-V characteristic suggest that bridge structures contain vortices, even in the absence of I_c because of the small value of the lower critical magnetic field H_{c1} which, from the estimate $H_{c1} = 2\pi I_c/cW$, is 0.45 Oe. The sloping plateaus on the I-V characteristic are attributable to the motion of a fixed number of vortices in the bridge structure.⁵ The experimental results presented here are therefore evidence that bridge structures made from a high- T_c superconductor are inhomogeneous and that they contain magnetic field vortices. The structure of a vortex depends on the relationship among ξ , the penetration depth λ_I , and the Josephson magnetic field penetration depth λ_I . For the values typical of the given high- T_c superconductor $\xi = 1.5$ nm, $\lambda_L = 150$ nm, and the superconducting current density $j = 10^4$ A/cm², which determines the value λ_J = 10 μ m, we have, according to the classification of Ref. 6, a hypervortex in the bridge structure without a region in which the order parameter is suppressed, as is the case in Josephson vortices, and the magnetic field penetration depth is much greater than the size of a single Josephson junction (which is on the order of a). As a result, all the irregularities of the structure of the bridge material have only a slight effect on the vortex motion (weak pinning) and the bridge structure is characterized by a viscous vortex flow induced by the transport current.¹³ The application of a weak electromagnetic field causes vortex synchronization and the appearance of current on the I-V characteristics of the Josephson steps. In such high-T_c superconducting bridge structures electromagnetic self-radiation can be seen directly. We wish to thank M. E. Gershenzon, A. V. Zaĭtsev, N. G. Pogosyan, and M. I. Faley for a useful discussion of the results of this study. Translated by S. J. Amoretty ¹⁾Institute of Radiophysics and Electronics, Academy of Sciences of the USSR, Moscow ¹N. V. Zavaritskii and V. N. Zavaritskii, Pis'ma Zh. Eksp. Teor. Fiz. 47, 334 (1988) [JETP Lett. 47, 400 (1988)]. ²A. I. Golovashkin et al., Pis'ma Zh. Tekh. Fiz. 14, 1286 (1988) [Sov. Tech. Phys. Lett. 14, 561 (1988)]. ³T. Yamashita et al., Jpn. J. Appl. Phys. 27, L110 (1988). ⁴K. K. Likharev, Zh. Eksp. Teor. Fiz. **61**, 1700 (1971) [Sov. Phys. JETP **34**, 906 (1972)] ⁵V. N. Gubankov et al., Pis'ma Zh. Eksp. Teor. Fiz. 18, 292 (1973) [JETP Lett. 18, 171 (1973)]. ⁶É. B. Sonin, Pis'ma Zh. Eksp. Teor. Fiz. 47, 415 (1988) [JETP Lett. 47, 496 (1988)]. ⁷V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1966). ⁸I. O. Kulik and A. I. Omel'yanchuk, Pis'ma Zh. Eksp. Teor. Fiz. 21, 216 (1975) [JETP Lett. 21, 96 (1975)]. ⁹B. A. Aminov et al., Pis'ma Zh. Eksp. Teor. Fiz. 47, 581 (1988) [JETP Lett. 47, 675 (1988)]. ¹⁰S. B. Ogale and D. DijKamp, Phys. Rev. **B36**, 7210 (1987). ¹¹P. Chaudari, J. Mauhart et al., Phys. Rev. Lett. 60, 1653 (1988). ¹²K. K. Likharev, Introduction to the Dynamics of Josephson Junctions, Nauka, Moscow, 1985. ¹³A. F. Volkov, Pis'ma Zh. Eksp. Teor. Fiz. 49, 86 (1989) [JETP Lett. 49, 103 (1989)].