Plasma pinch as a source of cosmic rays
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The hypothesis that galactic cosmic rays are produced in cosmic plasma pinches

leads to an accelerated-particle spectrum dN /dE~E ~ “withanindexv = 1 + /3,
which is approximately equal to the observed value v, = 2.7. The hypothesis
therefore looks extremely plausible.

1. In the energy range 10'°-10?° eV, galactic cosmic rays have a spectrum dN /
dE~E ~" with an index of approximately v, = 2.7, but the existing theories for the
production of galactic cosmic rays' do not predict such an index unambiguously.

In the present letter we solve the problem of the growth of nonlinear sausage
perturbations in a relativistic cylindrical pinch with a complete skin effect. We derive a

spectrum ~E ~ for the accelerated particles with an index v =1 + /3, which is
extremely close to the observed value and which is furthermore an unambiguous pre-
diction. On the basis of this result it is hypothesized that the galactic cosmic rays are
produced by precisely this mechanism. Plasma pinches have been under study in the
laboratory for a long time now, and sausage perturbations are observed in them. A
theory for these perturbations was derived in Refs. 2. Significantly, these experiments
also reveal accelerated particles with energies on the order of 1 MeV, so the idea that
similar processes may be occurring in space is a quite natural one. This idea was
advanced by Gerlakh,’ for example, but without any analysis. There is the question,
however, of just where and how cylindrical plasma pinches, which should apparently
be crossed by brief but extremely strong “cosmic lightning flashes,” could form in
space. Although this question requires further research, one might suggest as possible
candidates some new astronomical entities which were recently observed: ‘‘jets,”
which are huge plasma streams moving at formidable velocities. These jets are ob-
served for the most part in radio galaxies, e.g., NGC 6251, where a jet with a length on
the order of 1 Mpc has been observed, but they are also found near stars. For example,
the binary star SS433, which is a neutron star or a hole, provides a jet moving at a
velocity of 80 000 km/s. At the “nodes™ of a jet we observe a magnetic field directed
perpendicular to the axis of the jet; the situation is extremely reminiscent of the necks
in laboratory pinches. In our opinion, however, the most effective mechanism for the
formation of cylindrical jets in space might be a process which starts with the collision
of two plasma formations carrying oppositely directed “‘frozen-in” magnetic fields. A
so-called neutral current sheet, in the form of a plane pinch, should arise at the inter-
face. The tearing-mode instability would quickly tear this sheet up into current fila-
ments: cylindrical pinches, in which necks could form and rupture the pinches, as is
observed in laboratory pinches. This process could apparently occur repeatedly, since
ruptured “z-pinches” can be seen fairly frequently in nebulae.

2. We consider an individual z-pinch, assuming for simplicity that it has a com-
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plete skin effect, so we will describe the plasma in it by means of the well-known
equations of single-fluid relativistic gasdynamics (Ref. 4, for example). These equa-
tions are difficult to solve in their three-dimensional form, so we approximate them by
one-dimensional equations, using the familiar approximation of a narrow jet or chan-
nel, in which all quantities are assumed to remain constant over the cross section
S = 7a’, where a = a(t,z) is the pinch radius. In the proper frame of reference, moy-
ing at a velocity v = v, (t,z) along with the matter, we introduce the quantities # (the
enthalpy density), n (the particle number density), and p (the pressure). We also
introduce the unperturbed values ayn,, and p,. Assuming that the plasma is nonrelativ-
istic in this proper frame, we use the standard relations p = p,(n/n4)%, s = Cp/Cy, and
h = nM.c*, where M|, is the mass of an ion. We now introduce a dimensionless “den-
sity per unit length” p. = Sn/Syn, and assume that a constant current /; is flowing
through the pinch. At the boundary » = a(#,z) this current creates a field B = 21/ca
whose pressure B”/87 balances the plasma pressure, so we have p = p,(a,/a)>. We
can thus write the z component of the equation of motion and the continuity equation
in the approximation of a narrow jet or channel in the following form, in our notation
(see also Ref. 6):
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where B=v/c, u= By, y=+1—B7% and £ = sp,/ (s — 1) nMyc? is a constant.

To solve relativistic system (1), we set p. = &/x, # = sinh y and then introduce
the inverse functions @(x,y) and ¥(x,y) in accordance with

ct =T(x,y)= (¢ sinh y — @ cosh y)xe ™, z=2(x,y) = (¢ cosh y — @ sinh y)xe™.
(2)

As a result, we find the two equations @ |, =¥, + ¢¥/x, ¢, = x(¢ — @ ;). We thus
have

; A A
A¥y=gl =20+ Lp=0, Lo=xp, +(2-x)¢,. (3)

The eigenfunctions of the operator L are orthonormal Laguerre polynomials 4,
= L {V(x) with a superscript 1. Since the set 4, (x) is complete, a general solution of
(3) can be sought in the form of a series @ =2Z2FA4,f,(y), where f,
= C, exp( — |ylyn + 2). To determine the coefficients C,, we note that the stage in
which the necks develop in a pinch under natural conditions in space should be pre-
ceded by a stage of a comparatively quiet “‘plowing” of the plasma and the formation
of the pinch itself. In our model we cannot deal with this preliminary stage, but we will
simulate it by introducing the requirement that there be no perturbations in the time
limit 1~ — o«; correspondingly, we are adopting the condition ¢~ « for p. =1,
v = 0. In other words, the potential ¢(x,y) must have a singularity at the point x = ¢,
y =0, so it would be more legitimate to write Eq. (3) as if it were a Poisson equation
A®M@ = — 4mp,, where p, are 5-function “charges” which generate a potential and
which lie at the point x = ¢, y = 0. The solution can then be written in terms of a
Green’s function:
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3. It should be kept in mind, however, that the charges p, lie only at the point
x=¢, y=0, so it is convenient to switch to the new variables x,, y,, setting

x'=€e+x,y = —y. Using w(x) = xe ™ * and introducing p.q (x,y,) = 27w (x")po,
we rewrite (4) in the more appropriate form
Ax.y)=ff dx1dy 1P epS(x; €+ X1,y +y1) (3

We expand the function S in a Taylor series in the small quantities x, and y,. We then
obtain an expansion of the potential ¢ in multipoles of the charge. The first term,

— = A (Xﬂ\ (E) _
gpI— S = . - n | !,/ +2
0So, @ ffpe fdx,dyl, Sofx; e,y)_zo _\7__'1_5 yivn+2 (6)

will be nonzero if the “total charge” @ is nonzero. Solutions with @ #0, however,
describe perturbations which are periodic over the length of the pinch,’ for which we
need periodic “nucleating centers.” If we assume that these nucleating centers could
not arise under the conditions prevailing in space, we should regard solutions with
Q 50 as unrealizable! Solutions with Q = 0, on the other hand, are not periodic; they
are instead local. The simplest of them is the solution ¢ ' = DS, with a “dipole
moment” D= {xprdx dy, Since A,=1 and di,/de =0, the sum 85,/d¢ in this
solution begins with the term with the factor of exp( — | yl\/§ ), which gives us the
“cosmic spectrum” ~E ~ '3 a5 we will show below.

To determine the spectrum, we note that the number of particles over a distance

dzis dN = ma*nydz = F(u)du. Using the notation N, = ma} n, for brevity, we find the
particle distribution function from the equations above:

aN 2 2 14 ’ —
F=( =No ~ €l ¥ +x(0 =g Nlo= ¥yrx(U—g tamhy] . (D)

This expression gives us the spectrum at an arbitrary time. A typical perturbation,
however, is a bulge between two necks. These necks rupture at t = 0, and at the same
time the bulge converts into a pancake, which contains the particles squeezed out of
the necks. In this pancake we have p. — » and x—0, and since at small x <1 we have

2
A%, y) = 0oly) +x01(¥) + Xo0a(¥) . .., Wx,y)&;i%'(yﬁ’;— o)., (8)

the distribution function in the limits -0, x -0 is F, = Nye@,(v)/7. In particular, for
the “dipole solution” we find

Ty —
¢o(y) == 1D 13/ 3 eIYVIVEIN | (€), Foy> 1)=Cy+V3), 9)
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This asymptotic expression is valid for essentially all local perturbations. It is actually
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the same as the observed spectrum of galactic cosmic rays. This agreement makes our
“pinch mechanism” for the production of galactic cosmic rays extremely plausible.

We wish to thank B. B. Kadomtsev, V. D. Shafranov, and Yu. D. Kotov for
useful comments.
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