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High-T, superconductors can have a Fermi surface even in their superconducting
state. This result explains the observed term in the heat capacity of high-
temperature superconductors which is linear in the temperature. This term
indicates a nonzero state density.

Measurements of the heat capacity of the high-temperature supeconductor
YBa,Cu,0, reveal a linear function of the temperature, C = ¢ T, at low temperatures,
with a value ¥ = 4.5 mJ/(mol-K?) for the purest samples."? It is becoming more and
more obvious that a linear term and thus a nonzero state density are characteristic of
the superconducting state in this substance.> This circumstance may be taken as an
argument in favor of a new type of superconductivity, based on the model of resonat-
ing valence bonds (RVB).* On the other hand, one could suggest an alternative expla-
nation: that a nonzero state density is a typical property of even ordinary superconduc-
tivity, provided that the band-band interaction is sufficiently strong.

In the case of interacting bands the gap function depends on the band indices n
and m[A,,, (k)], and the spectrum is no longer determined by the standard formula
E(k) = + (€2(k) + |A%*(k)|)'/?, which is valid only in the single-band approxima-
tion and according to which the spectrum in the single-band approximation vanishes
at no k in the case of an ordinary superconductivity. The situation changes if the
pairing interaction is strong, and functions A,,, which are not diagonal in the band
indices must be taken into account. These functions are usually ignored in the weak-
coupling limit, since they are small by a factor proportional to the parameter T /E.

In general, the quasiparticle spectrum in a superconductor is determined by the
eigenvalues of a Bogolyubov matrix of the general form

€, ()3, Bym &)
H = * 2 (1)
Amn(k) - en(— k)8, m

where €, (k) is the electron spectrum of band n. The qualitative behavior of the spec-
trum is determined by the general properties of a Hermitian matrix, according to
which the matrix has topologically stable zero eignevalues E(k) = 0, which do not
disappear even when external perturbations are acting. These zeros in the quasiparticle
spectrum are analogous to topologically stable defects in condensed media® but differ
from the latter in that they exist in momentum space (more precisely, in the space of
the quasimomentum k) rather than in real space.
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The zeros of the spectrum are defects of the matrix H in momentum space, i.e., a
subset of momentum space in which the matrix H is degenerate [detH (k) = 0]. The
zeros are described by classes of nonequivalent mappings of momentum space into the
space of nondegenerate matrices H, which form homotopic groups g, 7, ... .
Group 7, describes classes of singular surfaces in momentum space on which we have
detH =0, so at least one branch of the spectrum intersects the energy zero. These are
thus Fermi surfaces, by definition. They correspond to domain walls in a ferromagnet,
since they separate regions in which Bogolyubov quasiparticles have a positive energy
(the Bogolyubov spin is up) from regions in which they have a negative energy (the
Bogolyubov spin is down). The topological invariant for these domain walls is ex-
pressed in terms of a Green’s function:

+ 00
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This integer invariant changes discontinuously when the momentum k crosses the
Fermi surface. In a normal Fermi liquid, N(k) would be equal to the number of
quasiparticle states: N(k) = 1 for k inside the Fermi surface and N(k) = O for exter-
nal momentum. According to Luttinger’s theorem,® the total number of fermions,
3. N(k), is equal to the phase volume under the Fermi surface. The discontinuity in
N(k) also induces a jump in the momentum distribution of the real particles.

In pair-correlated systems, Luttinger’s theorem does not hold, since the general-
ized Green’s function includes an anomalous Gor’kov function F, so 2, N(k) is not
equal to the number of particles. Nevertheless, a Fermi surface can again be defined as
a singular surface on which the invariant (k) has an integer discontinuity, which
induces a (noninteger) discontinuity in the particle distribution function. Incorporat-
ing electron-electron Fermi-liquid correlations does not alter Egs. (2); in this case the
matrix G(k,w) must be treated as a complete one-particle Green’s function of the
system, which depends on the imaginary frequency and whose indices include the spin,
the band index, and the Bogolyubov spin.

In addition to singular surfaces, there may be singular lines and singular points in
the fermion spectrum in a superconductor. These singular features would be described
by higher-index homotopic groups, 7, and 7,, respectively. In the case of a matrix H
of general form, group 7, is trivial; i.e., the lines of zeros are topologically unstable.’
They may exist by virtue of a certain symmetry of the superconducting state, but they
disappear in the case of perturbations which break the symmetry. Group 7, is nontri-
vial. It provides classes of topologically stable point zeros, which do not disappear
even if the symmetry is broken.® Such points (boojums) are described by an integer
invariant, also in terms of a Green’s function:

1 "
N=— eV*l tr [ dS,G(x)3;G™ (x)G(x)3, G~} (x)G(x)3,G '(x). (3)

This equation remains in force when electron-electron Fermi-liquid correlations are
taken into account.
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Singular (Fermi) surfaces are the most typical situation in condensed media,
since they exist even in a normal metal. The disappearance of such a surface or a
change in its topology is realized by a Lifshitz phase transition. A transition into a
superconducting state or into some other state with a long-range order of the spin-
density-wave type or the charge-density-wave type is usually also accompanied by a
Lifshitz transition. Whether the Fermi surface disappears or simply changes shape or
topology upon such a transition depends on the details of the system. The particular
example in which a small Fermi surface survives the formation of a spin density wave
is discussed by Kato and Machida® with respect to heavy-fermion superconductors.

In the superconducting state, the Fermi surface disappears completely in the case
of a single band, but it may survive if the band-band hybridization due to the super-
conductivity [A,,, (k)] is sufficiently pronounced, i.e., comparable to the distance
between bands. Since this hybridization is small to the extent that T,./E is small, a
residual Fermi surface can be expected only in high-temperature superconductors.
Consequently, there will be a gapless superconductivity even in the absence of impuri-
ties and even at 7=0.

It is possible that the term which is linear in 7 in the heat capacity of YBa,Cu;0,
reflects a nonzero state density due to the presence of a Fermi surface in the supercon-
ductivity state. This interpretation agrees with experimental results on Raman scatter-
ing,'® which indicate the presence of normal electrons at low T. Since the size of the
residual Fermi surface is sensitive to the details of the interaction, we would expect the
linear term to depend strongly on the pressure, the magnetic field, the deformation of
the crystal, and other perturbations. We do not rule out the possibility that it would
disappear at certain critical values of the parameters.
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