Relaxation of unstable magnetization precessionin 3He-4
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During pulsed NMR in *He-A4, the magnetization relaxation occurs through a
propagation of fronts away from cell walls oriented perpendicular with respect to
the magnetic field. The front propagation velocity is found in the limit of intense
diffusion.

The spatially uniform precession of the magnetization in the superfluid 4 phase of
*He is unstable.' Specially designed pulsed NMR experiments have shown that this
instability determines the lifetime of the induction signal if the initial angular deviation
of the magnetization is not too small.>* The existing linear theory is successful in
describing only the beginning of the evolution of the instability.® Qur purpose in the
present study was to derive a theory to describe the magnetization relaxation in *He-A4
under conditions of pulsed NMR in the nonlinear region, i.e., in a situation in which
the deviation of the precession from uniform can no longer be treated as small. This
theory is based on the results of Kolmogorov, Petrovskii and Piskunov® and their
development by Kamenskii and Manakov.® It was shown in Ref. 5 for the nonlinear
diffusion equation and in Ref. 6 for a wider class of problems that in a situation in
which the perturbations which induce an instability are one-dimensional and localized,
the transition to the equilibrium state is of a combustion nature; i.e., there is a front
which propagates at a constant velocity. On one side of this front is the unstable initial
state, and on the other side is an equilibrium state. The velocity at which this front
moves can be found from equations linearized around the initial state.

To determine whether a transition to an equilibrium state can occur in this fash-
ion in the problem with which we are concerned here, it is necessary, according to
Kamenskii and Manakov, to study the asymptotic behavior of the solutions of the
linearized problem at a large distance (z) from the initial perturbation and after a long
time ¢ under the condition z = ¥z, where ¥V = const. This asymptotic behavior is deter-
mined by the saddle points k, (V) of the Fourier representation of the solution. The
points k, are found as the roots of the equation

d
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where T (k) is the growth rate of perturbations with wave vector k. A relaxation can
occur in the manner described above if there exists a value V= V. such that for all
V> V_ the real part of the expression ik, V + I'(k,) is negative. The minimum value
of V. is the front propagation velocity. This condition holds for the growth rate of the
instability of the precession in *He-A4, but the expression for I'(k) for arbitrary values
of the parameters in it is quite complicated,* and the velocity ¥, cannot be found
analytically. The analysis simplifies in the case of intense diffusion, i.e., when the
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parameter A=2Dw, /c” is large. Here w, is the plasma frequency, and D and ¢* are
components of the spin-diffusion tensor and the square-velocity tensor for spin waves,
respectively, which are important for the particular geometry of the problem. The
parameter A depends on the temperature; in the limit 7— 7, we have A — «, while far
from T, we would have A S 1 under typical conditions. We will restrict the discussion
here to the case of large A; the results of a numerical analysis for A ~ 1 will be reported
in a separate paper. Retaining in the expression for I'(k) the terms which are of
leading order in 1/A, we find

3~cosf

O
(k)= —— sin (3 ——— )20k ~ Dk? . (2)
4w T +cosf

After going through the necessary calculations, we can show that a limiting velocity
exists and is given by

V.=V, =c——sinf(3——— )", (3)

This is the front velocity in our problem. In expressions (2) and (3), £ is the initial
magnetization deviation angle, and ) is the frequency of longitudinal oscillations.

Under what conditions will the initial perturbations satisfy the requirements of
Ref. 67 It was shown in Ref. 3 that the chamber walls constitute an important source
of perturbations and that the orientation of the walls with respect to the magnetic field
H,, is important. The boundary conditions require that the vector 1, which character-
izes the orientation of the orbital part of the order parameter in *He-4, be directed
along the normal to the wall. Far from the boundaries, at equilibrium, we would have
1LH,,. If H, lies in the plane of the wall, we can satisfy both requirements. If, on the
other hand, the field H,, runs perpendicular to the boundary, then these requirements
are incompatible, and a transition layer with a thickness on the order of the dipoles
length 7, ~ 107" cm appears. In this layer, the orientation of 1 changes from 1LH,, far
from the boundary to 1||H, right at the boundary. We will assume that the volume of
helium of interset is bounded exclusively by walls oriented parallel to H,, (side walls)
or perpendicular to H,, (bases). The distance between the side walls is appreciable in
comparison with the distance between the bases. The spin precession frequency in *He-
A depends on the relative orientation of 1 and H,, so the local precession frequency
near the bases differs from the spin precession frequency in the interior. As a result, a
state whose spatial uniformity is disrupted near the bases arises afier the deflecting
pulse has ended. This nonuniformity serves as an initial perturbation. All of the condi-
tions for the applicability of the approach of Ref. 6 turn out to be satisfied, and it can
be asserted that in this geometry a front travels away from each base of the cell after
the deflecting pulse has ended. The front velocity is given by expression (3), in which
¢ is ¢, : the larger of the two velocities which appear in the gradient energy of *He-A.
The complete relaxation time 7 is thus proportional to the distance between the basis,
L, and is given by 7= L /2¥_.. We would expect that the picture of the relaxation
would not be qualitatively different in a more complex geometry, but the fronts could
not be planar, because of both the more complex shape of the initial perturbations and
the anisotropy of ¢?. The front width A can be estimated from the energy dissipation
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rate: A~D /V, ~A*/, ~Al,. From the equations of motion we can also find asymp-
totic expressions for the solutions on the two sides of the front. In contrast with the
examples discussed in Ref. 6, the two asymptotic expressions are not functions of the
combination z — V, ¢ exclusively. This circumstance apparently indicates that the
shape of the front varies in time.

The picture of the relaxation drawn here agrees qualitatively with the experimen-
tal results of Refs. 2 and 3. Unfortunately, a quantitative interpretation of these results
is ruled out because the cell geometry in the experiments of Refs. 2 and 3 did not meet
the requirements formulated above. It would be useful to carry out some similar
experiments with a suitably altered cell geometry, with provision for measurements of
the front velocity.

Since instability similar to that which we have been discussing here occurs in the
antiferromagnetic phase of solid *He (Ref. 7), the magnetic relaxation in this phase
may also occur in the manner described above.

We wish to thank V. G. Kamenskii and S. V. Manakov for useful discussions.
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