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The degree to which the ballistic conductivity of a quasi-one-dimensional channel
depends on the actual shape of ¥(x) of the external potential which forms the given
channel is discussed. The total number /. of the electronic subbands, which are
situated below the Fermi level in the given channel, is shown to be sensitive to the
actual profile of V(x).

The conductivity o of quasi-one-dimensional electronic channels, which has re-
cently been studied extensively (see, in particular, Refs. 1-3), is usually calculated
using a square-shaped external potential V(x) which forms the conducting channel.
Such an approximation is reasonable if the particular features of the dependence V(x)
are not important in explaining the observable characteristics of the conductivity.
Otherwise, a more suitable ¥(x) model should be used to determine the properties of
the conducting channel with variable parameters.

Our purpose in the present letter is to determine the degree of “‘sensitivity” of the
various characteristics of the conductivity of the channel to the V(x) model.

1. The most curious observable characteristic of the conductivity o is its abrupt
increase with the variation of the potential difference V, between the gate and the
electronic channel. The magnitude of the individual jump, Ao = ¢>/#, in this case does
not depend on the number of the step.! Calculation of o for the electronic spectrum
with an arbitrary discrete part of ¢, in the ballistic regime shows that the conductivity
does have steps (Ac) which are attributable to the appearance of new conduction

subbands in the channel due to a change in V:
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Here u is the chemical potential, and T is the temperature. The conductivity o such as
that in (1) was determined for a square channel in Refs. 1 and 3. Result (1) obviously
does not depend on the explicit behavior of V(x).

2. The next point, which has so far not been discussed, has to do with the fact that
the number of steps on the o(V,) curve increases approximately linearly with an
increase in Ve =V, where V' is the maximum value of ¥, at which the channel still
exhibits conducting properties.' This number of steps can be associated with the maxi-
mum number /* of the conduction subbands in the channel which are filled with
electrons. It thus follows from Ref. 1 that
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The value of / * for an arbitrary potential F(x) cannot be calculated in the general
form, as has been done for the conductivity o. In the two limiting cases, however—the
square and the parabolic potential-—the final results for / * in the quasiclassical approx-
imation have the same structure

F=c/Nya)' ' I*> 1, (3)
where ¢ is the numerical factor on the order of unity, N, is the number of electrons per
unit length of the channel, and 2a is the channel width.

To determine the realtionship between N, ,q, and the potential V(x), we will
write the quasiclassical condition for equilibrium in the channel which is situated
sufficiently far {(a distance | — ¢|>a) from the metallic electrodes (Fig. 1)
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Here x is the dielectric constant of the substrate, #(x) is the electron density in the
channel, and L is the channel length in the y direction. Relation (4) holds if a>a,,
where a, = x#’/(m*e”), and m* is the effective mass.

Making use of the Chebyshev polynomials, we obtain from (4) two general solu-
tions
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Relation (5) depends only slightly on the explicit form of ¥(x), and relation (6) is
highly sensitive to the behavior of V(x) in the channel. In particular, for a square
potential, when dV /dx has the shape of &-functions at the ends of the interval
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FIG. 1.
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x = = a, relation (6) becomes meaningless because its left side is divergent. The
theory which makes use of the square confining potential thus encounters qualitative
difficulties stemming from the need to remove singularities from relation (6). A
smooth potential V' (x) removes any doubt regarding this divergence, but, at the same
time deprives the theory of the advantages of a rectangular approximation for V(x),
which is frequently used, for example, to calculate the conductivity of the channel
which has a slight nonuniformity in the direction in which the current flows (see Ref.
3).

Let us now consider an actual model which would allow us to obtain quasi-one-
dimensional channels and which was numerically simulated by Laux et al.* in the
region of small values N, (Fig. 1). Assuming that the channel width a is small
compared with the spacing between the adjacent metallic strips (but large compared
with a,, )

|b—c!>a>ab, d<a b c , (7)
and solving the appropriate electrostatic problem which corresponds to the geometry

of the figure, we can easily see that the confining potential in the channel is primarily a
parabolic potential

1
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Here n," is the two-dimensional density of the donors which account for the filling of
the 2D electronic system. For simplicity, we ignored the spatial separation of donors
and 2D electrons; n(x) is the electron density in the channel for — a<x< + a.

Relations (9)—(11) determine &, N,, and @ as functions of V,—V{ and the
geometry of the problem. It is clear, in particular, that ¥, depends approximately

linearly on ¥, — V7, in good agreement with the numerical calculations of Ref. 4.

Using the Thomas-Fermi approximation, which holds in our case in the region
a>a,, we can write the effective potential ¥(x), which quantizes the motion of elec-
trons in the x direction, in the following form® [¢(x) was taken from (4) and V(x)
was taken from (8)]:

2
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For n(x), the classical definition of n(x) in (11) is legitimate to the extent that the
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condition a>a, is satisfied. Making use of the quasiclassical potential V(x) [Eq.
(12) 1], it is not difficult to calculate the total number of levels in this well,® from which
we find /* in (3).

Taking into account a, N, , and k in (9)—(11) and the expression for / * in (3), we
can easily determine the dependence of /., on ¥, — V"
]*®

theor

o (Vg—Vg’")", A>3/4 (13)

Here = in the evaluation of A takes into account the dependence of the curvature k in
(9) on ¥V, — V. Result (13) is a good approximation of the experimental behavior of
I*in (2), although it is not exactly equal to it. It is quite conceivable that the behavior

of /%, in (2) depends on the nonuniformity of the channel in the direction in which
the current flows.
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