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A local anisotropy of the dielectric susceptibility of a quasicrystal can radically
change the extinction rules and polarization properties of the observable Bragg
reflections, particularly for quasicrystals with nonsymmorphic symmetry space
groups.

The high symmetry of icosahedral quasicrystals (point symmetry 532 or
53(2/m); Refs. 1-4) makes their average dielectric susceptibility isotropic. In the x-
ray wavelength region, however, the local properties of quasicrystals may be manifest-
ed. At least three physical quantities pertinent to the interaction of x radiation and
Mossbauer radiation with matter are sensitive to a local anisotropy: the dielectric
susceptibility,>® the anisotropy of the Debye-Waller factor (or Lamb-Massbauer fac-
tor), and the gradient of the electric field at a Mossbauer nucleus.” The symmetry of
these quantities and their spatial distribution are determined not by the point symme-
try group but by the space symmetry group. The physical reason for their anisotropy is
an asymmetry of the local surroundings of the atoms. A study of these surroundings is
very important for reaching an understanding of the structure of quasicrystals. In the
present letter we are concerned primarily with the dielectric susceptibility," which
varies quasiperiodically in space and which gives rise to Bragg reflections.

In ordinary crystals, the existence of a local anisotropy of the susceptibility
(LSA) eliminates extinctions from certain reflections which are associated with heli-
cal axes and/or grazing-reflection planes. It also leads to a change in the polarization
properties of reflections.”™ The general form of the LSA tensor can be found for any
of the 230 crystallographic groups. The arrangement of atoms in quasicrystals and the
corresponding space groups are not yet known exactly. To find the form of the LSA
tensor, we will use one possible model of a quasicrystal: a projection from a six-
dimensional space."? We assume that we have a six-dimensional periodic structure
which corresponds to one of the icosahedral symmetry groups listed in Refs. 1-4. The
LSA tensor of such a structure is a six-dimensional periodic second-rank tensor which
is invariant under all symmetry operations of the given group. This tensor is then
projected, in the standard way for quasicrystals, onto a three-dimensional space, in
which a guasiperiodic distribution of a tensor quantity arises. In this manner we find
that form of the LSA tensor of the quasicrystal which is the most general form for the
given model. Its Fourier harmonics determine the intensity and polarization properties
of the reflections, which are extremely unusual, as we will see below.

A
The tensor y(R), which is perioidic in the six-dimensional space and which is
invariant under the given symmetry group, is constructed in precisely the same way as
*in the three-dimensional case.®* Below we will discuss only icosahedral groups which
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contain the fivefold, threefold, and twofold rotation operations 25, :4: 4 and 22 and also,
in the case of centrally symmetric groups, the inversion operation / (we are using the
notation of Ref. 2). In nonsymmorphic groups, the rotation 45 is accompanied by a
translation with a vector as,. For an arbitrary reciprocal-lattice vector

= 27T(n,,n2,n3,n4,n5,n6), where n, are the six-dimensional Miller indices, the Four-
ier harmomc yu of the tensor )((R) is an arbitrary complex symmetric tensor, For
any equivalent vector H', which is related to H by symmetry operation 4 (H = —4 H),
the tensor yy is no longer arbitrary and is instead expressed in terms of yy:

A A A
X = AxgATexp(Ha, ), ()

where a, is the translation vector which corresponds to the operation 2, and the
superscript 7 means transposition.? If the vector H is invariant under operation 4,
then we have H = H, and re}\ation (1) imposes restrictions on the tensor form of yy.
Consequently, by specifying yy only for nonequivalent H and determining the other
harmonics from (1), we find the most general form of the tensor y(R) which is
invariant under the given space group.

What restrictions on the form of )?H are imposed for reflections directed along
fivefold axes? Selecting theA( 100000) axis, we easily find from (1) that for
H = 27 (n,[l1,1]) the tensor yy is
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(2)
where b¥,..b{ are arbitrary complex numbers; 5, is the Kronecker delta; and
s,, = exp(2mim/5), where m =0, + 1, + 2.

The rotation operation ;15 sends the tensor %H into s,,,,)?H. If the group is
symmorphic (a; = 0), we find from condition (1) that we have m = 0 for all reflec-
tions H = 27 (n,LL111). If the group is instead nonsymmorphic then by choosing
as = (1/5,2/5,2/5, — 1/5,2/5, — 1/5), we find from (1) and (2) that the allowed
value of the parameter m depends on the first index of the reflection:

m = n(mod 5). (3)

If fo/llows from (3) that in the case n = 5k (where k is an integer) we have m = 0 and
Sp(yu ) #0. In other words, such reflections can exist even in the absence of an
anisotropy of the susceptibility.>* Reflections with n# 5k can be exited only by virtue
of an anisotropy.
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We now wish to find the tensor form of ;h in three-dimensional space. For this
purpose we project from a six-dimensional space: yy, = Pyn P" and h = PH, where h
is a three-dimensional projection of the vector H, and P is the projection matrix. From
(2) we find the following expressions for the tensor Fourier harmonics y,, in the three-
dimensional space (the z axis runs parallel to h):

/.10 0 0\ /100 _
Cobfilg 00 +(b”+f"bH—fb”)101o\,, if m=0
. lo 01 4 S o0 0/
A ! 00 i
e H o H H . H -
= < S A L Ry 00 1], if m=rz1
*h | (VSb% 37 TS)(::‘1 o)
: -1 +i ©
NSRS LRETLl (:i 10), : if m=72,
\ ) \ 0 00
(4)

where 7= (1 + J5)/2. Consequently, again in the three-dimensional space }h is sent
into y, €™ upon a rotation through an angle ¢ around h, By analogy with nonsym-
morphic crystals,** we could say that the tensor form of y, is as it would be if there
were a 5, axis, but with different (and generally incommensurate) translation vectors
for the different h (or, equivalently, each of the axes 5,, 5, 5,). The tensors y,, for
reflections forbidden (in the case of an isotropic susceptibility) by the existence of
grazing-reflection planes could be derived in a similar way.?

The tensor form of %h has a radical effect on the polarization properties of the
reflections. In the case m = 0, as in the isotropic case, an incident wave with a linear
o () polarization, whose vector is perpendicular to (parallel to) the scattering plane,
gives rise to a diffracted wave which also has the o(7) polarization. Form = + 1, a
wave with a ¢ polarization gives rise to a diffracted wave with a 7 polarization, and
vice versa. With m = + 2, only a wave with a certain elliptical polarization will un-
dergo diffraction (in back diffraction, this elliptical polarization degenerates to a cir-
cular polarization: right-handed if m = — 2 and left-handed if m =2). It is thus
possible to distinguish enantiomorphic pairs of quasicrystals on the basis of their po-
larization properties. The polarization properties of such reflections, which have al-
ready been observed in crystals,® are discussed in Refs. 6 and 8.

The quasicrystals which have been studied to date are apparently symmorphic.
The tensor form of y, in such quasicrystals is quite natural: If the vector h runs
parallel to fivefold and threefold axes, then y, is a uniaxial tensor. If h runs parallel to
a twofold axis through which a mirror-reflection plane passes, then y, is a biaxial
diagonal tensor with axes directed along h and two twofold axes orthogonal to h.
Because of the biaxial nature of y,, the intensities and polarization properties of the
reflections depend on the azimuthal angle (@) of the rotation around h. In the case of
polycrystalline materials, an average is taken over the azimuthal angle. This circum-
stance may lead to a partial depolarization of the diffracted radiation (for uniaxial y,,,
there is no such depolarization). Note also that in imperfect quasicrystals the coher-
ence length for the anisotropic part of y,, may not be the same as the coherence length
for the density. The relation between these lengths will depend on the model of the
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quasicrystal and the nature of the imperfections.

It can also be shown that the anisotropy of the Debye-Waller factor does not alter
the general extinction rules in quasicrystals, while an anisotropy of the Lamb-Moss-
bauer factor and graidents of the electric field at Mdssbauer nuclei (which have al-
ready been observed in quasicrystals) should lead to changes in the extinction rules,
the intensities of reflections, and the polarization properties of reflections (if there are
electric-field gradients, the anisotropic part of the tensor y, may be comparable to the
isotropic part). The restrictions on the tensor form of the Fourier harmonics found
above may also prove useful in a study of icosahedral phases in liquid crystals.®~"!
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