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Arguments are presented to support the suggestion that the phase transition to the
normal state in a type-II superconductor is due to a spontaneous nucleation of
Abrikosov vortices and is a first-order transition. The effect of defects on this
transition is determined.

The nature of the phase transition to the normal state in type-II superconductors
is not yet completely clear. Halperin ef al.' have concluded that this transition is
abrupt (as in type-I superconductors), but the numerical analysis by Dasgupta and
Halperin? led to the conclusion that the transition is continuous. The analysis carried
out in those papers is not complete: Halperin' ignored phase fluctuations, and Das-
gupta and Halperin? ignored fluctuations in the amplitude of the order parameter. It
was found in Refs. 3 and 4 that there is a point on the phase diagram at which the
magnetic-field penetration depth § is comparable to the correlation length . They
interpreted that point as a transition to type-I superconductivity (it is true that the
corresponding values of £ in those studies were slightly different).

The temperature—(magnetic field) phase diagram (7 — H diagram) which fol-
lows from the results of Refs. 3 and 4 appears to be impossible on the basis of simply
continuity: Two lines of second-order phase transitions merge into a line of first-order
transitions with a finite discontinuity at the point of merging.

This contradiction can be eliminated by assuming that at H = O the phase transi-
tion to the normal state involves the spontaneous nucleation of Abrikosov vortices at a
finite . Since vortices of different signs attract each other, a transition of this sort will
unavoidably be of first order. The corresponding phase diagram has the form shown in
Fig. 1. Near 7 the thermodynamic critical field H_ vanishes in a root fashion, since
the transition is abrupt. From continuity conditions at the triple point we have
dH, /dT = Q. The vertical line which connects the H, (7) and H, curves has been
drawn somewhat arbitrarily; its position is actually not known.

We wish to present some arguments in favor of this suggestion. The idea that a
phase transition from a superfluid state to the normal state in liquid helium involves
the spontaneous nucleation of vortices was advanced more than 30 years ago by Feyn-
man.’ Actually, however, the free energy of a vortex vanishes only at & = . This
circumstance seems completely natural in light of the principle of the universality of
critical phenomena: In this case it is not possible to cite any characteristic line, other
than £ = «, which might associate & at the point of the phase transition with a
spontaneous nucleation of vortices. On the other hand, there is such a length,
E*¥~®2/T, in a superconductor® (P, is the magnetic flux quantum, and 7., is the
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FIG. 1.

phase-transition temperature when the charged nature of the superconducting fluid is
ignored).

An indication that the free energy of a vortex can vanish at £~ ¢ * can be found
even in linear elastic theory for an isolated vortex. For the free energy per unit length
of an isolated vortex, f; we have, with logarithmic accuracy,

du 2 dk 2, 2
f=e—Ciel( —))=e—Cief —Kk(u)=e-C, Tt (1)
dz PA

Here u is the displacement vector of a point of the vortex for a displacement parallel to
the z axis, and C, and C, are constants on the order of unity. The integration over k is
limited by k., ~ 1/£, i.e., by the reciprocal thickness of the vortex core. The latter
refation can be derived through an analysis of the spectrum of oscillations of the vortex
as in Ref. 6. Using the definition of the linear tension of the vortex, € = (®y/
4778)* In k, where k = §/&, we find

T 3t
r= .T( 167%62T

Ink — const). (2)
According to the Josephson relation,’ the coefficient of the logarithm is a constant on
the order of unity near the transition point, and In « decreases, as was shown in Refs. 3
and 4. At £~ £ *, the expression in parentheses in (2) may vanish. At £~£ *, however,
the contributions to the free energy from the nonlinear terms in the Hamiltonian of an
isolated vortex are also on the order of T/£. As a result, the sign of the coefficient of
T 7§ cannot be determined. Furthermore, the very expression for the vortex energy
written under the assumption In £3> 1 becomes inapplicable. Nevertheless, the topolog-
ical considerations which we cited at the beginning of this paper require a vanishing of
the free energy of the vortex even at a finite &.

As we already mentioned, a phase transition accompanied by the nucleation of
vortices must be a first-order transition. It would naturally occur at a temperature
lower than that at which the free energy of an isolated vortex would vanish. The jump
in the density of the superconducting component, 7, can be estimated by substituting
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&= £&* into the Josephson relation. We find

m T
n~mlae* [HC? ~— (=& )P N, (3)
Mo Tat

where m and m,, are the effective and actual masses of an electron, N, is the atomic
electron density, 7, is a characteristic atomic temperature ( ~ 10 K), and a = 1/137
is the electrodynamic constant. It can be seen from (3) that even at T, ~100 K the
value of n is 10 ~®N,y; i.e., it will be difficult to observe experimentally.

The presence of defects constituting inclusions of the normal phase in a crystal
would lead to an additional lowering of the energy of a vortex. It follows from Ref. 8
that the defect concentration ¢ appears in the expression for the free energy in the
combination ¢£ >. This circumstance means that an additional length & ~c~'/> appears
in the system, and the energy of the vortex can change sign at £ ~g~‘ . In other words, a
transition with a spontaneous nucleation of vortices can be caused by defects. This will
be the case if £<& *. The nature of the anomalies is different from that in the pure
material. Under the opposite inequality, defects will cause simply a slight lowering of
the transition temperature. With an increase in the defect concentration, & may be-
come smaller than the characteristic size of a defect, and the nature of the transition
may change. It is quite possible that this will be a second-order transition: Boyanovsky
and Cardy have shown® by the 4-¢ expansion method that a phase transition to the
normal state in a type-II superconductor with a high impurity concentration is a
second-order transition.

Even at a concentration ¢ = 10'* cm ™ and for a transition temperature 7, ~ 100
K in the defect-free crystal we would have £ /& *~10"*% i.e., the anomalies near the
transition would be determined by the presence of defects.

We wish to thank our anonymous reviewer for some useful comments which have
made possible a correct placement of emphasis in this letter.
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