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A new algebra of the invariance of the homogeneous Maxwell’s equations is
constructed. It contains a 16-dimensional Lie algebra, a Grassmann algebra, and a
superalgebra as snbalgebras.

Internal symmetries contain important information about entities of research in-
terest. As an example one might cite the dual symmetry of the equations of electrody-
namics, which implies the existence of not only electric but also magnetic charges.'
The internal symmetries of the equations of the free electromagnetic field have been
studied by several investigators.'™ So far, the research has been restricted to the class
of Lie algebras and groups. As an example one might cite the Lie algebra of the
U(2) ® U(2) group.” Our purpose in the present letter is to extend the class of alge-
bras of the invariance of Maxwell’s equations, in particular, to construct a Grassman
algebra and a superalgebra.

We work from a vector formulation of the equations:

VXE"—aoH; V-E=0; VXH=a°E; V'H=O: (H)

where x° = ¢t (c is the velocity of light, and ¢ is the time), and x, y, z are spatial
variables. Using Fourier transforms of the fields E and H,

E=(1/2n)? [ d°pE(p,Ne’®*X;  H= (1/21) " [d?pHEp,1)e® "X (2)
we can write Maxwell’s equations in the momentum representation:
~ fa'd A A fad ~
pXE=id H; prE=0; pXH=-id E; p-H=0- (3)
We introduce a set of field transformations:
%,’c ='2/‘kcos0 + i[@'D“)LGD’)M(D’)N]kIE';sinB;
Eycosg +i[@ - @ VDY ) Hising ;

~

H\,=H,cosd + i@} M(-D* V1, H sino;

[}

By
. 4)

~ ~ N
H}, =Hycosp — if(0°)H* M (-D*)V), B sing,
where 6, @ are group parameters; k, [=1,2,3; L, M\, N=0,1,2,.., n— w; and g and

s specify antisymmetry and symmetry. We require that set (4) send Egs. (3) into
themselves. The corresponding invariance conditions make it possible to find the gen-
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eral form of the matrices ¢, &°*, D*. They depend on the variable p, and on certain
functions of these variables.” They have the commutation and anticommutations prop-

erties
WD =0, (P, D'} =0 P,D'] =0, 5)

‘and they generate an infinite set of symmetry transformations (4) of Egs. (3). We
single out a subset of matrices which satisfy the normalization condition on the solu-
tions

D°DH% = Eyp, Dy = Eop, DD%p = Eyp . (6)

The normalization makes it possible to put the matrices in concrete form:

» . 0 —pyp P2/p 7
D= i || pufp 0 ~pi/p " D
~D2fp Pu/P 0
(0> —20%)/p* —~2p102/P* = 20123 /p°
D=1 ” — 2p1pa/p* @ —2»3)/p* —2p:p5 Jp* “ (8)
~2p105 /p? — 2p,ps [p? @~ /p?
2 2,,2
- 2 p1p§+p1p3—~p:p§
DY =1 pipap’
' 2
bipsp,
2
p1p2p? P1D3P,
Py P, = PPyt PLP,  Papap) , 9)
PaP3D; —pip) t PP +r3p;

where p = (p} +p3 +p2)"% |L| =2(ptps +pips +pipt —ppipips) "% Of these
matrices, (7) and (9) with the plus sign were established in Ref. 2; this is the first
realization of (8). With (7)—(9) in mind, we return to transformations (4). Corre-
sponding to them is a set of infinitesimal 6 6 matrices

OO MoV o
Yiun = ’" ",
0 OV DWpY
o &YoYey
Ziun =1 ” ” ) (10)

OO (-DHY 0
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These matrices have the permutation properties
: = NL' £ 'L .
LT enves LR T (CRVACIEICRVARD) NPV

LY ywe Zopw ) = DV E 50OV EY M2 v e w5 (D)

3

. L N L+ N
Zyyw ], =i OV AN s NI NY o e N

Zimn
and thus satisfy both a Lie algebra and a Grassmann algebra. They can be combined
into a unified algebra 4~ @4 ¢ and a superalgebra [Y,Y]1=7Y, [V,Z] =Z,
{Z,Z} = Y. Using the multiplication table®

Bpe =25, HB* =D DD =D DU =¢F, HD* = D', HD* = D* (12)

we single out 16 infinitesimal matrices Y00, Y1000 Y0100 Yoorr Y1100 Yio1s Yorrs Yites
Zyoo Zio0s Zoioo Zoows Z110s Zio1s Zot1s Z111- In terms of these matrices we can express
all of the other matrices in (10). The singled out matrices form closed sets and gener-
ate 16-dimensional Lie and Grassmann algebras, the direct sum A, @ 4 &, and the
16-dimensional superalgebra

- L 'L )
Wimn, Yomwl = (- -y, +L'M+M'N+N' >

iy L NL+N :
Y opw - Zopew 1 = 1DV~ 1) Y e N G (13)

= L'+ N' 'L+ N .
o Zoyow } = 1 DY - VY, b N - N
L, MN=0,1.

The linear combinations

Ay ==(Y101 +*Zoa1) /4;
Ay = = (Y100 +iZogo) [4; Az =—(—Yoo1 +iZ10,)/4;
Ay ==Y 9y —Zo01) /14;
As ==(~Yi00 tiZg00) 4 A¢ = ~(Yoo1 +iZ101) /4;

By = = (Y111 +Zo11) /4 (14)

By =~(Yyy0 +iZoyo) /4; By = = (Yoyy viZyyy) /4

By==(Y111— Zo11)/4;

By =~(~Y110 +iZo10)/4; Be=—(Yo11 +iZy11)/4 ,

along with the commuting matrices Yy05, Y5105 Z100s Z110» form a Lie algebra which is
isomorphic with respect to the Lie algebra of the group U, = U(2) & U(2)
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® U(2) ® U(2). A transformation to x space makes it possible to show that U, con-
tains the transformations of the U(1) subgroup (Heaviside-Larmor-Reinich"?), of
the U(1) @ U(1) subgroup (Danilov* and Ibragimov’), and of the U(2) & U(2) sub-
group (Fushchich and Nikitin®). Except for U(1) ® U(1), all other transformations in
X space turn out to be nonlocal (integral), in agreement with the conclusion reached
in Ref. 2 regarding the subgroup SU(2) @ SU(2).
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