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The metric and twisting potential are derived explicitly for dual versions of the 2D
Freedman-Townsend theory and the SU(2) group. Computer calculations of two-
loop B functions are reported.

Freedman and Townsend' proved the classical equivalence of a self-affecting anti-
symmetric gauge tensor field (the F7 model) and the principal chiral o model in
d = 4 by means of a dual transformation. It is pertinent to note that in the 2D case for
the SU(2) group the FT model (a nonlinear o model with twisting) and its dual
principal chiral o model can be constructed explicitly.
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We consider a Freedman-Townsend theory in d = 2 with a first-order Lagrangian

1 1
Ly=-~ 5 Bae“"}?'“mz - EAuaAg’ (1)
where F/ is the non-Abelian strength of the gauge field 4 ;, for the SU(2) group with

the structure constants €, where a,b = 1,2,3.

The equations of motion for 4,,, from action (1),

C MY uvebce ny bey 40 —
28 BCHY + (n"78%¢ + "B & )A, =0, (2)
are algebraic with respect to AZ and can be solved explicitly:

I My nY i 2 =
a 1+B? (€ avBa te BaBbauBb + Eachba Bc)’ B ——BaBa' (3)
This is a nontrivial property by virtue of the B dependence of the matrix with 4 Z in
(2).

After substituting (3) into (1), we find a nonlinear 2D ¢ model with a Wess-
Zumino-Witten term (or twisting):

1 1
2 Loy =" 5 BaslB)8,B,8°By # iy (B)€"3,B,0,B, ] (4)
where
= 5zzb * BaBb - - €achc (5)
gab 1 +B2 ’ ab 1 +32 )

On the other hand, by varying (1) with respect to B,, we find the constraint

F,,, =0, which can be solved for 47,

AL=2M,%(0) 07, (6)

in terms of scalar fields (local coordinates) ¢° and the local edge M {(0), which
satisfies the Maurer-Cartan equations

M M °
— C
26° a6

+2¢m M, S = 0. (7

After substituting (6) into (1), we find the Lagrangian of the principal chiral ¢
model for SU(2), which is the dual of (4):

14
. b
L,y= Egab(o)aueﬂa“o , (8)

where the metric is
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£,,(6)=4M,SOM,° (©). (9)

To find the metric g,, (8) explicitly, we use a formal solution of the Maurer-
Cartan equations™:

1 -
M, (©6)= 3 tr(T,U '8, U)=- 5 dttr(T Ut U, (10)
where
3
U@®)= exp {i ai 0°T, }, (11

and T, are the generators of SU(2) in the associated representation. Using the easily
verifiable identities

ap y2k+1 - p2kga
6°T ) R*g°T (12)
(eaTa)2k+ 2 =R2k (BaTa)Z ,
tr[T (6°T,) T,6" Tp1=0,

tr [T,(0°T, ) T,(07T* 1= 2R%6, 6.

in which we have R?=60? 4 632 + 02, and which follow from elementary properties
of the SU(2) generators,

(T, T,=ie,, T, w(T,T,)=2,,

abc” ¢’ ’ (13)
te(T,T,T,)= i€y, (T, T,T,T)=8,,8 ,+8,.5,.
we find
£f _ isin Rt ] -1
U=l " (0°1) + _———; / CaN (14)

Substituting (14) into (10) and integrating, we find

sinR ;5 cOSR— R —sinR
Mdb(g):__ 6‘1 —_ R eﬂbc C __ R3 eaeb' (15)
We thus find
4(2cosR —cos2R - 1) 40 0 )
A _ _ b
g,,0= = (R*s,,—6,0,)+ Rg . (16)

A renormalization of a nonlinear 2D o model may be understood as a quantum
deformation of the geometry of the field manifold. In turn, the renormalization is
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characterized by the renormalization-group £ functions. To calculate specific values of
the S functions from the given metric and the twisting potential, we have used a
system for analytic calculations on a computer (the version REDUCE 3.0) and the
general results.’

For the theory of (5), the single-loop f functions are

1
By = r gy +Bz)2 (g5 B+ B +B? =3]-5,,(3+ B}, (17

2h
o (‘) =— —8b__
in agreement with results of “manual” calculations."

For the dual theory (8) with metric (16) we find the result

n

A 2 13 13
(mpL) = (6,6, ~R*8,,)+ 2KK" - K’)EE;— (18)

2R4

where the prime means differentiation with respect to R, and
K=cos2R~2cosR + 1. (19)

Computer calculations of the single-loop S function of the o model in (4)-(5)
lead to the results

1
(4nf 63 = = (1+B*)* {B,By [~ 3(1 + B)* ~24(1 + B*)? 20

-48(1 +B*)? +48(1 +B*) - 32]+ 8,,(=3(1 +B*)* +80(1 + B*) - 32]},
(4m6y) = (L +B) *h,, {(1+B)* +4(1 +B*)-2}.
The corresponding result for model (16) is

(4m) 6(2) = [QK"K - K'*) + (K'* + 4K)] (21)

16R*K3

X (8,0, ~R*8,,)~ ——(QK"'K-K*)0,0,.

8R2 4

Consequently, different geometries (different metrics and twistings) and different
f functions correspond to different dual versions of the same classical 2D theory.
Quantum equivalence does not preclude differences in the S functions, since the latter
are determined with respect to different fields.
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The basic results of this study are Eqgs. (5), (16)-(18), (20), and (21}, which are
useful for applications.
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