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Perturbation theory, variational estimates, and numerical simulation by the Monte
Carlo method have shown that adiabatic description of the interacting electrons
and phonons based on the small ratio of the characteristic energy of a phonon, w, to
the kinetic energy of an electron, E., is impaired in the region of intermediate
values of the coupling constant 4 =~ 1.

It is generally assumed' that the small value of the adiabatic parameter
Wik ~w/D <], (1)

where D 1s the width of the electron energy band in an unstrained lattice (%= 1),
makes it possible to use familiar self-consistent equations for the self-energy part of the
electron Green’s function in the normal state’ and the superconducting state’ at arbi-
trarily large values of the coupling constant A.

We have noted previously®® that the classical theory of electron-phonon cou-
pling®? ignores a possible local lattice strain due to electron-phonon coupling, i.e., the
corresponding polaron effect—self-trapping of an electron with an appreciable nar-
rowing of the electron band.

Allowance for the finite width of the initial (seed) electron band D effectively
reduces the width of the electron spectrum even in the standard equations for the
Green’s function® when

A> Epfw> 1, (2)

This conclusion can also be inferred from the known expression® for the renormalized
electron mass, m* =m(1+A4).

In the present letter we will show that the polaron collapse of the electron band
occurs at much lower values of the coupling constant:

AL (3)

An inequality, which is the reciprocal of inequality (1), holds in this case; in other
words,

/W21, 4)

and the standard approach based on the Migdal theorem is inapplicable. Here Wis the
maximum kinetic energy of a polaron. The Hamiltonian of the electron-phonon sys-
tem in a lattice-site representation is
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H, ;= iililc‘;. ¢ [U(q)d;e'q i +H.a.].
Here c;" (¢;) and d ;" (d, ) are operators which create (annihilate) an electron at a site
with index i and a phonon with a quasimomentum q, respectively; J is an integral
describing the transition of an electron from one site to another (J= D /2z and is

. nonvanishing only for the nearest neighbors, whose number is z), w(q) is the phonon
frequency, and U(Q) is the matrix element of the electron-phonon coupling. For
U(q) we will use a power-law parametrization:

! (6)

1
U(Q)=gowo—=——,
(q) [+ R \/N—’ (aq )"y
where g, is a dimensionless coupling constant, whose degree of nonlocalizability is
determined by the parameter ¥, and N and g are the total number of sites and the
lattice constant. Here w, is the maximum phonon frequency, o, = max w(q).

In the case of weak electron-phonon coupling the ground-state energy of Hamil-
tonian (5)in second-order perturbation theory in H, ,, is

Eq =—2J~ T [ U(Q)*[e(q) + uX(q) — e(0)] ", 7N
z :

where €(q) is the dispersion relation for electrons, which corresponds to the Hamilto-
nian H,. In the strong-coupling limit of the electron-phonon coupling the term A, in
the complete Hamiltonian (5) can be ignored in zeroth approximation and the follow-
ing expression for the ground-state energy can be obtained by means of the standard
canonical transformation®:

Eo=—§lU(q)l’/w(q)E—E,,, (8)

where E, = AD is a polaron shift of the atomic level. Energy (8) determines the
position of the polaron band, whose width W is smaller than the width of the original
band D by a factor of exp (g”). Accordingly, the effective polaron mass m* is exponen-
tially large compared with the seed band mass of the electron, m:

m* =mexp (g*). (9)
In the case of a simple cubic lattice a rigorous expression for g2 is®

& = T U@L ~(cosaq, + cosaq,, + cosaq, )31/« (g). (10)
q

Specifically, this constant, rather than g5, has a clear physical significance, since it
determines the value of the renormalized carrier mass. In the case of local electron-
phonon coupling with a dispersionless optical phonon mode [y =0, w(q) = w,] we
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have g* = g%, which can easily be seen by substituting expression (6) into (10). At
the same time, a numerical estimate gives g* = 0.11g?, in the case of Frohlich interac-
tion (y = 1). The effective frequency o = Ep/gl, which is equal in order of magnitude
to @, is exactly equal to it only in the case y = 0, w(q) = @,. In the case of Frohlich
interaction with a dispersionless mode a calculation based on Eqgs. (8) and (10) gives
o= 1.73 w,, a value which should be taken into account in the quantitative estimates
of the parameters using the values obtained experimentally. In the strong-coupling
limit, H, can be incorporated in the perturbation theory in terms of the canonically
transformed Hamiltonian. This approach requires a summing of many diagrams with
many-phonon vertices. In the second-order in H,, the ground-state energy with a local
interaction with a dispersionless mode in a simple cubic lattice is given by (see Ref. 7)
E'-—E[1+lz(J)2 =—F 1+1 2
) ) " | p[ 3 (m‘*) I (11)
p p

This result shows that in the strong-coupling limit, the decomposition parameter is in
fact 1/4. According to (11), the existence criterion for a polaron can be written as an
inequality

1
A=E /D> —~= . (12)
P/ Nz

For z = 6, for example, this inequality works well even at A~ 1. This estimate shows
that the polaron regime sets in at relatively low values of A(4=1), because the energy
of the electron in the locally strained lattice is lower [see Egs. (7) and (8)]. There
have been many attempts to calculate the polaron characteristics in order to study the
nature of the transition of a polaron from the state with a large radius (a broad band)
to the state with a small radius (a narrow band). These attempts have been based
largely on variational methods and have shown that the dependence of ground-state
energy on A is nonanalytical and that the renormalization of the polaron mass is
discontinuous at the transition point. Emin,® for example, predicted the transition to
occur at 4 = 4_=~0.6 in the case of a local interaction with a dispersionless mode in a
simple cubic lattice, with w/D = 0.05. A numerical simulation using the Monte Carlo
method, however, has apparently yielded the most reliable results for the same sys-
tem.>'% In particular, De Raedt and Lagendijk® have observed a fairly abrupt transi-
tion between two states, suggesting a possible nonanalytic behavior near the critical
value of the coupling constant. The transition region in this case was found to be the
narrowest for a 3D lattice and the widest for a 1D lattice. The results reported in Ref.
9 for the case wy,/D = 1/2z correspond to the critical values A, ~0.85 and 4. = 0.45 for
a 1D lattice and a 3D lattice, respectively.

The importance of the numerical calculations®'” is that they have shown that the
numerical values of A_ coincide, within a small error, with the estimate which was
obtained by equating Egs. (7) and (8). This circumstance makes it possible to deter-
mine A, relatively easily for any chosen value of w,/D. The results of the calculations
for a local interaction (y = 0) and the Frohlich interaction (¢ = 1) with a dispersion-
less phonon mode are shown in Fig. 1. In particular, it follows from this figure that at
D /wy>5 the values of A% 1 correspond to the polaron state and that the Migdal
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theorem is inapplicable. If the original band, where D /w,>20, is wider, its range of
application is limited to even smaller values of A(4=0.7).

In conclusion we note that allowance for the Coulomb interaction does not
change the conclusions of this study regarding the applicability of the adiabatic ap-
proximation even at the metallic carrier concentrations, since at A % 1 the radius of the
polaron state is on the order of the lattice constant. In the many-polaron theory of
superconductivity* a systematic allowance for this interaction leads to a renormaliza-
tion of the binding energy of the bipolaron.

'R. D. Parks, Superconductivity, Benjamin, New York, 1969.

’A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [Sov. Phys. JETP 7, 996 (1958)].

*G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 365 (1960) [Sov. Phys. JETP 11, 503 (1960)]; Zh. Eksp. Teor.
Fiz. 39, 1437 (1960) [Sov. Phys. JETP 12, 1000 (1961)].

“A. Alexandrov and J. Ranninger, Phys. Rev. B 23, 1796 (1981); B 24, 1164 (1981); A. S. Alexandrov, Zh.
Fiz. Khim. 57, 273 (1983); Zh. Eksp. Teor. Fiz. 95, 296 (1989) [Sov. Phys. JETP 68, 167 (1989)].
°A. S. Aleksandrov ef al., Pis’'ma Zh. Eksp. Teor. Fiz. 45, 357 (1987) [JETP Lett. 45, 455 (1987)].
“Yu. A. Firsov, Polarons, Nauka, Moscow, 1975.

"D. M. Eagles, Phys. Rev. 145, 645 (1966); A. A. Gogolin, Phys. Status Solidi B 109, 95 (1982).

*E. Emin, Adv. Phys. 22, 57 (1973).

°H. De Raedt and A. Lagendijk, Phys. Rev. B 27, 6097 (1983); 30 1671 (1984).

'*H. De Raedt and A. Lagendijk, Phys. Rep. C 127, 233 (1985).

Translated by S. J. Amoretty

314 JETP Lett., Voi. 50, No. 8, 25 Sept. 1989 A. S. Aleksandrovand A. B.Krebs 314



