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A randomly inhomogeneous, three-dimensional, two-phase medium is studied. An
asymptotically exact expression for an effective conductivity at the percolation
threshold is derived.

The problem of effective conductivity of highly inhomogeneous media has been
solved exactly only in the two-dimensional case.' In the present letter we will consider
a conducting mediuvm which was obtained by randomly mixing two phases. We will
show that at the percolation threshold (with equal phase concentrations) the effective
conductivity of the system is equal to the geometric mean of the conductivities of the
phases. The problem has not been solved for arbitrary concentrations.

Since there are no corresponding results in the three-dimensional case, a descrip-
tion based on the scaling hypothesis must be the principal approach. According to this
hypothesis, the effective conductivity o, of a strongly inhomogeneous, two-phase sys-
tem near the percolation threshold can be represented in a self-similar way?*:
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o, =0, h'f(e/n’"), (n

where o, is the conductivity of the first phase, the parameter h = 0,/0, is the ratio of
the conductivities of the phases (A<1), and € is the deviation from the three-dimen-
sional percolation threshold. The percolation occurs in the first phase. Asymptotic
behavior of the function fis described by the indices of the percolation theory s, z, and

q:

[ lzl-g, z2<—1 -
flz) = ¢, jz} <.
L 2!, z>1

These indices are related by the relation
t(l/s—-D=gq (3)

We note that a scaling description of conductivity is a standard description which has
been confirmed by numerical simulation.

Let us consider an effective conductivity of a highly inhomogeneous, three-di-
mensional, two-phase system at the percolation threshold (e = 0), where the conduc-
tivity is characterized exclusively by the index s. The phases are randomly distributed,
as in the two-dimensional model. Our objective is to determine the exact value of the
critical index s. We will show below that the value of this index is 2/3, i.e,,

13023 for 0,<o0,. (4)

o,~0
The method used to determine the index can be described as follows. We will
proceed from the fact that the dependence of the transverse conductivity 0%, on the
magnetic field H at the percolation threshold is known. According to Ref. 3, this
dependence is described by the four-thirds power law:
eH

£, ~ ol where  B= — 1. .

We will show that at the percolation threshold this dependence of the conductivity o%,
on the magnetic field is described by the index s; specifically,

af, ~ol(B)**. (6)
Accordingly, we obtain from (5) and (6) an exact expression for the index s, and thus
confirm expression (4).

We will express the dependence of the transverse conductivity on the magnetic
field in terms of 5. We will accordingly establish a relationship between the conductiv-
- ity and the galvanomagnetic properties. (The possibility of establishing such a rela-
tionship was initially suggested by Balagurov.*) We will employ the arguments used
by Dykhne.” The direct-current equations which describe a comductor

divi=0 curle=0 (7
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and the generalized Ohm’s law in a magnetic field

j+i61=oe (®)
are unaffected by the linear transformations

j=aj' +b[ne'], e=ce'+d[nj} , (9)

where n is a unit vector directed along the magnetic field, and a, b, ¢, and d are
constants.

In the three-dimensional case it is necessary to use the truncated transformations:
transformations (9) with the coefficient d = 0. For the characteristics of the trans-
formed (primed) system we have

b b 2 b(1 + g
a':o'_c -28- + _(l_tf__). , =6~ J_f_)_ (10)
a a gac oc

Similar expressions can be obtained for the effective values, and the primed system is
chosen on the basis of the secondary arguments.

Let us assume that the original system is characterized exclusively by the conduc-
tivities o, and o, of the phases (3, =3, =0). As the primed system we chose the
system

01= 05 =/0,05. ' (1)
The Hall components of the primed system are determined uniquely from (10):
By =—bjco, By =blcos. (12)

The transformation which determines the exact relationship between the indicated
systems at arbitrary phase concentrations is given by the coefficients

c b? b 13
o= g —— ', fl=m— (1)

a CdUe CO'e

We accordingly obtain a relationship between the effective characteristics of the origi-
nal two-phase system and the primed system:

—r VUi gz
a=1, bjc=+/6,0,, cla=——" (14)
g, to,
We wish to emphasize that relations (14) hold for any relationship between the con-
ductivities and any phase concentration.

Let us analyze expression (14) for a highly inhomogeneous medium at the perco-
lation threshold, where the effective conductivity of the original system is
o, =oh*(h<1). In this limit the effective values of the primed system, according to
(14), are

0, ~ ' l(B Y79, 8, ~61(61)* "9 -
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Here o' = \o,0,, and B} = — Jo,/0,.

Expressions (15) hold in both the two-dimensional and three-dimensional case.
Only the critical index s depends on the dimensionality of space. In the 2D case
expressions (15) become, as expected, the corresponding expressions of Ref. 5. Ex-
pressing the conductivity tensor g, in terms of o and 3 in the standard way: o, = 0/
(14 B?), we find expression (6).

In conclusion, let us discuss the four-thirds square law. Strictly speaking, this
dependence was found for the cases ;> 1 and 5,> 1. From Ref. 3, however, we can
find the same dependence in the interval of interest to us: 3, € 1<f3,. Using the method
of Ref. 3, this limit was considered in Refs. 6 and 7, and the four-thirds square law was
obtained (although Ref. 3 was not cited in Ref. 6). Let us discuss the universality of
this law. As was shown in Ref. 3, anomalous magnetoresistance (5) is a consequence
of the change in the nature of transverse diffusion in strong magnetic fields. This
mechanism requires that the Hall concentrations in the different phases must differ
considerably. This condition holds in our case. The two-dimensional problem on mag-
netoresistance is solved exactly in the case of arbitrary values of £, and 8, (Ref. 5). In
each limiting case: 5, <1</, and 3,> 1, 5,>1, we obtain the same magnetic-field
dependence of o%,.

The value s = 2/3 is also in good agreement with the results of numerical simula-
tion: 0.62.
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