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1. We consider the affine space

Q={L=0"4u,_ 0" "+.. +u}
of differential operators of order # on the circle S'! with a highest-order coefficient of
unit. We assume that the coefficients of the operators are smooth functions on the
circle. The space which is tangent to & consists of differential operators of order no
higher than n — 1. We recall-* that a“Gel'fand-Dikii algebra” is a Lie subalgebra of
vector fields on € of the type

Vell) = LX), — (LX) L. (1)

Here X=d_'ox_,+d %x ,+.. is a pseudodifferential  symbol,
(2" ,a,0.), =2Jad.. means to take the differential part of a symbol,
A_ =A— A, means to take the integral part of a symbol, and the coefficients x _;
are differential polynomials of the functions u,, i.e., elements of the ring k [, ]
[here k is the field R or C, and u{” = 3, (u;)]. The vector field V (L) is essentially
independent of the coefficients X with indices lower than n. The commutator of vector
fields on & is determined by, say, the action of a vector field on the “functions” (i.e.,

on the functional F{L] of the functions u;, which are the coefficients of operator L)

V.(L)(F) =§€F[L F eV ()]

A Gel'fand-Dikii algebra of course includes the Lie algebra of vector fields on a
circle (Ref. 2, for example). It turns out that the following assertion holds.

A Gel 'fand-Dikii algebra contains a Lie algebra of differential operators on a
circle.

To demonstrate this assertion, we associate with the differential operator
E=¢, +e,d, +e,0%+..+e,3%

the vector field

WglL) =LE-(LEL™'),L = (LEL™')_L. (2)
We obviously have
Will)= V. (L) (3)
- (EL ).
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Direct calculations verify that we have

Standing on the left side of (4) is the commutator of vector fields on 2 .

Comment 1. We wish to stress that the differential operators E and Fin (2), (3),
and (4) do not depend on L. The corresponding assertion would not be correct in a
Gel'fand-Dikii algebra, as we know quite well: If [ [V (L),Vy(L)]] = V(L) for
L-independent X and Y, then Z will generally become dependent on L.

2. Relation (2) can be derived in the following way. We consider the solutions f
of the equation Lf'= 0. We assume that the differential operators E act in an infinitesi-
mal fashion on these solutions, sending them into the solutions of another n-th-order
differential equation:

(L + €A) (f+ €Ef) = 0 mod €.

We then have A = — W (L), and now relation (4) becomes obvious.

3. It is of course understandable that only differential operators of order no higher
than » — 1 will effectively act on the solutions of #-th order equations, and the effect of
higher-order operators reduces to the effect of an operator of an order no higher than
n — 1, which, of course, depends on L:

Ef= (E~(EL™'),L)f. (5)

2. we now change the subject. The following assertion holds. 4 Lie algebra of

differential operators on a circle allows a nontrivial centrtal expansion by means of
numbers:

0-~k-DoOpPN (S') > DOP(S') - O, (6)

The corresponding 2-cocycle can be specified by

min!
mogat) = e (n) g(m+1) gy,
clf,, 3%, 8,0%) i) élfmg" (7)

That (7) determines a cocycle can be verified by direct calculation. In the process
we use the following identities with binomial coefficients:

z (—D*m+n—k)n
K=o (m4+n+p—k)kl(n—k)!
(= 1) mi(n+p—1)!
(p— Di(m+n+p)

for p>1

- (= D*m+n+p—k)nl

k=0 (m+n—k)kl(n—k)!
_ pl(m + p)!

(p —m)l(m 4+ n)!

for p>n, Oforp<n.
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That the cocycle is nontrivial follows from, for example, the circumstance that when
there is a limitation on the Lie algebra of vector fields, it converts into the Gel'fand—
Fuks cocycle (Ref. 3, for example).

Comment. According to Ref. 4, the Lie algebra DOP(S') has a unique nontri-
vial central expansion by means of numbers.

3. In conclusion we would like to point out the following: As Luk'yanov has
shown,’ the Gel'fand-Dikii Lie algebras is the classical limit of the so-called W,
algebra,® which contains, along with the energy-momentum tensor—a conformal-
symmetry generator—chiral currents of spin n. The geometric meaning of W, sym-
metry remains unclear.

Now, in accordance with the discussion in *1, we have found a basis for the
suggestion that the classical limit of the W, algebra is the transform of the Lie
algebra of differential operators on a circle during application to the solutions of n-
th-order differential equations. We see that the W algebras themselves are related to
a corresponding factorization of central expansion (6) of the Lie algebra of differen-
tial operators. This expansion plays the role of a ““universal W algebra.” Universal W
algebras have been studied independently by Morozov.®

It is extremely likely that cocycle (7) can be generalized to a Lie superalgebra of
differential operators which correspond to Lie superalgebras of string theories. '’

Incidentally, a recent preprint'' dealt with related questions.
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