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A numerical study of the (2 + 1)-dimensional Landau-Lifshitz—Hilbert equation
is reported. A new mechanism has been found for the generation and breaching of
horizontal Bloch lines.

The equation of motion of the magnetization under the influence of the effective
field, i.e., the Landau-Lifshitz—Hilbert (LLH) equation, is fundamental to a study of
the dynamics of domain walls. The system of integrodifferential equations with partial
derivatives which arises is so complex, however, that the customary approach has been
to study average equations: the Slonczewski equations.'™ The assumptions which un-
derlie the system of Slonczewski equations are known to be extremely limiting. When
the driving field is above a certain critical value, for example, these assumptions do not
hold, and all that is possible is a qualitative study of various mechanisms for the'
dynamics of the domain wall.
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Fast computers have recently made possible substantial progress toward a direct
solution of the complete system of LLH equations for calculations on two- and three-
dimensional domain-wall structures.*> In these studies, however, the LLH equations
have been used as an analog of an iterative method for finding steady-state solutions of
static problems. The basic problem in realizing a dynamic version of the numerical
method is the absence of a priori information about the nature of the motion of the
domain walls.

In the present letter we report the use of an effective algorithm for adaptive
variation of the mesh which makes it possible to keep the core of a moving domain
wall at the center of the computation region. This is the first use of this algorithm for
studying the dynamics of a two-dimensional domain wall.

We consider a ferromagnetic film (a magnetic-bubble material). We assume that
the Z(k) axis is the anisotropy axis and is directed perpendicular to the plane of the
film, the X (i) axis runs perpendicular to the domain wall and lies in the plane of the
film, and the Y(j) axis is directed along the domain wall in such a way that it
completes a right-handed coordinate system (Fig. 1). We assume that all the
magnetization distributions of interest are translationally invariant along the Y axis.
We set v(x,z,0) = M(x,2,0)/M, ) h = (x,2,) = H(x,z2,0)/Ms,t, = |y| Mst,l= (4k)'"
/(wM?%), and Q = K /27M %. Here M(x,z,r) is the magnetization distribution, M is
the saturation magnetization, y is the gyromagnetic ratio, / is a characteristic length, 4
is the exchange constant, & is the uniaxial anisotropy constant, H(x,z,) is the effective
field, and Q is the quality factor. We write the LLH equation in dimensionless form:
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where v="v,+V,j+ V,k|v|=1,v, =v,i+v,, VV is the Laplacian, h,, is the de-
magnetizing field of neighboring domains, h, is the external magnetic field, { is the
computation region, and « is an attenuation parameter. We write the boundary condi-
tions and the initial condition in the form
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v(x, z, 0)=vo(x, z), (% z)EQ=[2L, x 2L,]

System (1)—(2) has been solved by the method of finite differences. As initial
conditions we selected the corresponding solution of the static variational problem of
the structure of a domain wall without a driving field. The idea of the adaptive algo-
rithm can be summarized as follows: When the driving field 4, = ak, a > 0, is applied,
the domain wall moves toward the domain with the magnetization direction opposite
the field. Clearly, after traveling a certain distance the wall will come to a halt at the
edge of the computation region. To keep this event from occurring, we take a “snap-
shot” of the domain wall after a time interval Az; if the wall has moved a given
distance AS, then we displace the mesh along with the domain wall by the correspond-
ing number of nodes. The values of Az and AS are chosen empirically to suit the nature
of the motion and the capabilities of the computer.

The results which we are reporting here were calculated for a film with the
parameter values Q =4, D=3 (1), a = 0.2, and h, = — 4k(My). The parameters of
the computation mesh were N, X N, = 40, where N, is the number of nodes along the
x axis, and N, is that along the z axis.

We denote by @(x,z) the angle between the XY projection of the magnetization
vector and the Y axis, and we denote by &(x,z) the angle between the magnetization
vectors and the z axis. Figure 2(a) shows the familiar process by which a horizontal
Bloch line (HBL) is nucleated and breached.! The basic process for a twisting angle
¥(z) at the center of the wall [¢(z) = ¢¥(x,z) on the line 8(x,z) = 7/2] goes as
follows.
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1. First, a perturbation of the angle ¥ is nucleated at the lower surface of the film.
This wave grows and propagates upward. Two HBLs form; a larger one (a 27 HBL)
at the top and a smaller one (a 7 HBL) at the bottom.

2. The upper HBL is breached. At the upper boundary, the vector v rotates
through an angle of 47 [not through an angle of 27, as in Fig. 2(a)].

3. A bit later, a breaching of the lower HBL through an angle 27 begins.

4. The remaining central part of the 1(z) curve catches up with the boundary
values.

A perturbation is then nucleated near the upper boundary, and it grows. The
lower 2 HBL is breached; then the upper # HBL is breached; finally, the central
region, reaching the edge, completes the cycle.

This dynamics of the angle 1y makes the motion of the individual parts of the
domain wall nonuniform. The average velocity over 10 cycles was 0.45 (arbitrary unit
1)/ (dimensionless time unit ¢, ).
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