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The dimer RVB model is equivalent to the problem of the surface of a quantum
crystal. There are regions on the phase diagram which correspond to a disordered
state of the dimers (a quantum liquid ) and to an ordered state (acrystal). In the
first case, the excitations are gapless, while in the second there is a finite gap.

The dimer RVB model on a square lattice was introduced by Kivelson' as the
simplest implementation of Anderson’s formulation,” whose purpose was to find a
situation in which the ground state of a quantum system on a lattice is a liquid. In this
model, the “states” are all the dense (having no voids) fillings of the edges of the
square lattice with dimers (each vertex is covered by precisely one dimer). The sim-
plest Hamiltonian is®

H=2—jd=>Cll+Ha) + v(=){=1+ 1y (M. (1)

The basic problem is that of the structure of the ground state (a crystal or a liquid?)
and of the excitations (is there a gap in the spectrum?). To answer these questions, we
reduce the dimer problem to another problem, which has been studied more thorough-
ly.

The following geometric construction proves useful. Each configuration of the
dimers is naturally equivalent to an arrangement of 2 X 1 rectangles, i.e., dominoes, in
a plane (each rectangle covers one dimer). In turn, each arrangement of dominoes is
equivalent to the surface of a 3D crystal. Let us describe the structure of this crystal.
We take the polyhedron in Fig. 1: two pup tents resting on the two faces of a square,
one being rotated 90° from the other. Working with objects of this type, one can
construct layers which, when laid on top of each other, can fill the entire space without
voids [Fig. 2(b)]. In neighboring layers, the polyhedra are rotated through 90°. The
period of this construction in the vertical direction is four layers. The plane is parti-
tioned into dominoes in a mutually one-to-one correspondence with the surfaces of
this crystal (Fig. 2). The surface must be projected without folds onto the basal plane.
The triangular faces are projected into line segments.

Any question concerning the dimers can thus be interpreted as a problem con-
cerning the surface of a crystal. Let us pursue this correspondence for the dimer RVB
model. The kinetic J term corresponds to the addition of one polyhedron to the surface
and the removal of one polyhedron from the surface; i.e., it describes quantum
growth—-melting fluctuations of the crystal. The potential V' term represents the energy
of the elementary steps. The Hamiltonian of the well-known problem of the surface of
a quantum crystal has been obtained.* The ordered and liquid states of the dimers can
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FIG. 2. Correspondence between (a) the configuration of dominoes and (b) the surface of the crystal. The
numerals specify the indices of the layers in the crystal.
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be identified with smooth and rough states, respectively, of the surface. The low-
energy excitations in the dimer problem (“resonons”®) correspond to the smooth
fluctuations of the crystal surface.

We see that our dimer problem has a hidden macroscopic variable: the average
slope of the corresponding surface. The macroscopic nature of the slope, i.e., its slow
time dependence, is a consequence of the circumstance that the transformation which
has been constructed sends any local Hamiltonian for the dimers into a Jocal Hamilto-
nian for the surface. This degree of freedom has appeared elsewhere and has already
been utilized: “topological sectors” and “dipole moment density.””

What is the nature of the ground state? We know that the surface of a quantum
crystal, having a rational slope, is smooth, regardless of how strong the quantum
fluctuations are.* Irrational slopes, on the other hand, would correspond to a rough
state. In order to find a complete description of the phase diagram, we add to Hamilto-
nian (1) two terms, which control the average slope:

E (1) (el 1) (1) 4 (1 CH= 111, (2)

The summation here is over all the dominoes, and the arrows specify the direction of
the slope of the corresponding face of the polyhedron.

In the (u,u,) plane, to each rational slope there corresponds a region of nonzero
area in which this slope is realized. The size of this region is determined in order of
magnitude by the energy of the step, which is nonzero in a smooth state. In the case of
well-developed quantum fluctuations, J> V, the energy of the step is exponentially
small, in accordance with J /¥ and in accordance with the Miller indices of the face,*
so the total area of these regions of the phase diagram is also exponentially small. The
energy of the step determines the size of the gap in the spectrum of fluctuations of the
surface. Rational slopes of the surface thus correspond to ordered crystalline states of
the dimers, and there is a gap in the excitation spectrum.

The remainder of the (u u,) plane, which corresponds to irrational slopes, is of
considerably more interest. A rough state with a zero step energy prevails there. This
statement means that the dimers form a quantum liquid with gapless excitations.
When the quantum fluctuations are large, the rough state of the surface (i.e., the
liquid state of the dimers) fills nearly the entire area of the phase diagram.

The dimers corresponding to the four orientations of the arrows in (2) lie on four
noninteresting sublattices of the ground lattice. Consequently, the liquid phase can be
reached by correctly choosing the chemical potentials on these sublattices.

We note also that in the case of strong quantum fluctuations the correlation
radius 7, at which the difference between the rational and irrational slopes begins to be
seen is exponentially large, in accordance with J /¥.* In this case, the system of dimers
behaves as a liquid over scales smaller than r, for all u,u,.
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