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The expansion of the elastic energy of icosahedral quasicrystals in the “phonon”
displacements is considered. It is shown that an appropriate Ginzburg-Landau
functional describes a first-order phase transition in which the symmetry is
lowered to a pentagonal or triangular symmetry. A suitable phase diagram is
constructed.

Since the discovery of quasicrystals' this new type of solids has stimulated in-
creasing interest.” Many quasicrystals obtained experimentally have a definite disorder
relative to an ideal Penrose lattice, which manifests itself in the displacement and
broadening of the diffraction peaks.® This disorder is customarily regarded as a certain
displacement field which corresponds to the “phason™ degrees of freedom and which
arises during the growth process.**

However, because of the presence, in the decay of the elastic energy of an icosahe-
dral quasicrystal, of a term which relates the phason components of strain to the
phonon components,”® such a disorder may accompany ordinary displacements.’ Us-
ing the method of atomic density functional, Jaric and Mohanthy'® have calculated
the elastic constants of an icosahedral quasicrystal and detected a mechanical instabil-
ity due to spontaneous strain which corresponds to one of the four irreducible repre-
sentations of the icosahedral group Y. From the number of these representations it can
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be inferred that fifteen components of the strain tensor of the quasicrystal are trans-
formed. The symmetry of the phason spontaneous strain was analyzed by Ishii."’

In the present letter we will examine the Ginzburg-Landau expansion as an order
parameter for a phonon-type spontaneous deformation.

The Landau theory of such phase transitions, sometimes called ferroelastic transi-
tions, has been developed extensively.'>'* The general procedure involves the deter-
mination, based on the symmetry considerations, of the nonzero components of the
spontaneous strain tensor of the low-symmetry phase and the determination, in the
next expression, of the coefficients of the free-energy expansion in the magnitude of the
strain as a one-component order parameter in terms of the elastic constants of different
powers.

In an icosahedral medium the strain tensor transforms in accordance with the
direct sum of two irreducible representations of the group Y: a single and a 5D irredu-
cible representation. Since a single representation does not correspond to a lowering of
the symmetry, the structure of the low-symmetry phase will be determined by those
maximum subgroups of Y, upon the reduction to which from a 5D irreducible repre-
sentation a single representation of the subgroup splits off. It is easy to see that D5 and
D, are such subgroups, which were detected previously'* in the analysis of the expan-
sion of the free energy in the amplitudes of the density waves. The strain refers to the
even representations, so we can replace D,, by C,, which has no reflections.

The symmetry of the shear tensor in C,, gives rise to a uniaxial strain

€ = e(Gnn, — BU), ()
where n is a unit vector directed along the axis of rotation. In Voigt’s notation we have
m=3nf—-l; n2=3n:-—l; n3=3n§—-1;
(2)
Ng = 3nyng; ns = 3nin;; ne = 3nn,

We restrict the expansion to the fourth order, as is usually the case in problems of
this sort.’* The number of independent second-, third-, and fourth-order elastic con-
stants for an icosahedral medium is equal to the number of times a single irreducible
representation is included in the second, third, and fourth symmetric degrees of repre-
sentation corresponding to the strain tensor (2, 4, and 6, respectively).

In the basis, which determines the direction of the 5-fold axis of symmetry as
2nm

5
m=123,4,5, e =(0,0,1),

)sin@ ; cosf)

. 2mm
€ v, = (sm(—g )sin;  cos(

(3)

where @ = arctan of (2), there arise 26 third-order nonvanishing elastic constants. Of
these constants, twelve are distinct. For the fourth order, 64 elastic constants are
respectively nonvanishing and 28 are distinct.

Substituting into the Ginzburg-Landau expression for the elastic energy the order
parameter such as (2), we obtain an expansion in powers of the vector components n.
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Here the vth order in the strains corresponds to the power 2v in {#,}. The number of
effective elastic constants which determine the expansion of the energy in powers of
the uniaxial strain will then be equal to the number of times a single irreducible
representation is included in the corresponding symmetric power of the canonical 3D
irreducible representation, according to which the coordinates of the vector n are
transformed. For an icosahedral symmetry, these multiplicities are 1, 2, and 2 for the
fourth, sixth, and eighth powers, respectively. Consequently the number of effective
“uniaxial” elastic constants of the second, third, and fourth orders are 1, 2, and 2.

In basis (3) the expression for the order parameter corresponding to the symme-
try C; with a 5-fold axis along the z axis can be written

1
= — - 4 2
n 7@( = 1N M3) )

and the free-energy expansion can be written
Ci1— Cr2 174

AF =——— " ¢* + 4Cy 14 +C. 34+ (—3Ciq4a + c . 4
3 n 6\/—( 114 T Casen” +( 1444 4444) (4)

Similarly, for symmetry C; we find

5 M N2, 23 3f+2 ¢+1
n = (-— -—2 + 2 44
23 -37 T T+2 /5§ T+ 2 \/1+

where 7= (5 4+ 1)/2 is the “golden section.”
55"
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FIG. 1. Free energy (6) vs the order parameter for various temperatures. 7. = T. + (2/9)8 corresponds
to a first-order phase transition.
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We recall that the Landau-Ginzburg expression for a one-component order pa-
rameter

B . 7.,

(44
AF = —(T~T)* + —n* + —n*; a, v>0 6
2( o 3Tt Y (6)

at f #0 describes a first-order phase transition at a temperature T. =T, 4+ 2/96,
where @ = %/ay (Fig. 1). Transforming expansions (4) and (5) to (6) and introduc-
ing the notation

0= — | €1y =Cra); Oo= — 2 $3 = 114 g, = 2840
T T=1, 29 Cs444 Cass Cisaa

we find two ways to lower the symmetry

- 1+ 2
Y—)Cs as=.£__.4_§-§.). o
1 -85,
31— 4,)
Y- C 6y = ——— 6
3 3 3T 8 )

-3/8 /6 §,

FIG. 2. Phase diagram showing the symmetry of the low-symmetry phase as a function of the relationship
between the effective elastic constants.
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In the coordinates &, £, we can construct a phase diagram in which the regions
corresponding to the condition 65> 65, where the symmetry is lowered to C;, are
separated from the regions where 6; > 05 and the low-symmetry phase is described by
the subgroup C;.

Let us assume that C,4,, >0. The condition y > 0 for the two expansions, (4) and
(5), singles out in the plane the band — 3/8 <{, < 1/8, in which the symmetry can be
lowered to each subgroup, depending on the relationship between 8; and 65 (Fig. 2).
At £,>1/8 there can be a transition only to C; and at £,< — 3/8 a transition only to
Cs can occur. An interesting point is that there is no loss of stability due to a second-
order phase transition at £ =0 (i.e., {3 = 1/4 for the symmetry C; and {3 = — 1/4
for C; in the region in which the various low-symmetry phases compete with each
other.

If C,444 <0, then a transition to Cs occurs to the right of the line £, = 1/8, while a
transition to C; occurs to the left of the line {, = — 3/8, and a competition region
does not arise.

We can therefore conclude that the spontaneous deformation leads to a lowering
of the symmetry from the icosahedral to the pentagonal or triangular symmetry, de-
pending on the relationship between the effective elastic constants of the third and
fourth orders. In the region in which there is a competition between the various low-
symmetry phases the transition is a first-order transition.
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