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The general structure of the scalar Green’s function on the compact Riemann
surfaces has been studied. An equation which couples the second- (and higher-
order) derivatives of the scalar propagator with the first derivative has been
derived.

The scalar two-point functions on compact Riemann surfaces play an important
role in string perturbation theory. Various mathematical aspects of these entities were
analyzed by many authors and comprehensively discussed in a review by D’Hoker and
Phong.! At the same time, the two-point Green’s function is a scalar propagator in the
quantum field theory on a Riemann surface. We will show that some interesting infor-
mation on the structure of this entity can be obtained by analyzing the auxiliary two-
dimensional quantum theory.

Let us consider the theory of scalar field X(z) on Riemann surface M of type A
with the metric ds* = 2g,,dzdz

1 -—
§= Z“fd2z{azX82X—'1\'1(azX)2 = AJ(3X) +4mr; 0X], (hH
n

where AZ(z) and ®(z) are the background 2D fields, and AZ is an infinitesimal field.
Our notation is the same as that used in Ref. 1.

Let us calculate the A—P component of the effective action (EA) W(A,®) which
is defined as

exp(— W) = f DXexp(-S).

In perturbation theory this can be accomplished in two ways:

a) By choosing S, as the free action
1
So= Z;fd’zi;)zX X

The A—® contribution will then be described by diagram a shown in Fig. 1.
b) By defining the other free action .S,
1 ’ 7
So= — Jfd?z[3,X8:X — AZ(3,X)’ = AJ(8; X)),

which can be rewritten Ain covariant form using covariant derivatives
D, =V, — A2V, 4+ (V,A2)M. In this case all A~® terms are found in diagram b in
Fig. 1, where the Green’s function G'(z,z) is constructed from the new metric
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FIG. 1.

ds'’? =2g,z1dz + Af|dz)*. )

It is evident from expression (2) that the dependence G’'(z,z) on A is determined by
the transformation properties of the function G(z,z) relative to the infinitesimal Bel-
trami deformations. The general structure of the scalar propagator must therefore be
known in the range of the coincident points. Note that the law governing the transfor-
mation of the (regularized) scalar Green’s function for the Weyl extension of the
metric was determined in Ref. 3, but its structure has not been studied completely.

The Green’s function is poorly determined in the limit z—z'. To give G(z,2')|,_,
a meaning, we will regularize the Green’s function, making use of the intrinsic time
cutoff.? It can be shown that in this regularization the following equality holds:

R ’ s . 1 2 -t
lim Gfz,z':€)=G(z;e)=A + o J @2 Gz, w; )N w;e),
z—3' gl

A= S VEG(wie)==lne+. .., Nz €)= AG(z; €)= Ado — T, V¥

1
S &WNE
-V'7,)G@, w;e)l,_,- (3)

Here € is an infinitesimal regularization parameter, A, is a Laplacian, and the Green’s
function G(z,0) satisfies the equation

AyGlz 0= T s(z—w)— T 4)
Z, W= —=8(Z-wW)~ ————=.
° vE S &g
Using the integral representation for the propagator G(z,w;e), we easily find
~ ~ h -
N(z;e*0)=2R (z)=2R (z) +4ng* T f (ImQ)lat-, 5
[ {2 =R f2) +4rg 2 o (m O (5)

where R, (z) is a scalar curvature, @] are holomorphic differentials, and Q,, is the
matrix of the periods of the Riemann surface of type 4. It is interesting to note that the

integral §d 22\/§Rg = 47 does not depend on the type of surface.

From the equation
) -
8 ey Gl2. ¥) = Wf d* av/go(w){G(z, w) +G(y, w))

we find the constant 4
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- 2
A=-Ine+ —2-7;fd y\/gr[—z-g“"a“papp+pR‘4]

1 ] S ~ (6)
To1 ] 4 VBT YVER, ()G (@, y)Ryly) + ¥(my).

Here 2, = e“zf’gﬂv is a constant curvature metric, and W(m,) is a function on the
Teichmiiller space. Expressions (5) and (6) completely determine the structure of the
regularized Green’s function (3).

The dependence of the function G(z;€) on the Beltrami differentials A now can be
determined by using Egs. (3), (5), and (6), and also the transformation property

1
aBel"'Cmic(z’ y} = i;_fdz O.JA‘;w awG(z’ w} awG(yi w) + h.C. (7)

The foregoing results can be used to determine the relevant terms in the effective
action. From the requirement that the A—® terms, found by methods a) and b), be
equal, we find the equation for the scalar Green’s function

1 ~ n
(3,G(z, w))* =V;G(z, w) + o %00z w0 d*y eV, Gz, yRy(y)
- 21 d*yd.G(z, y) ,Glw, )T~
z 4 X/ 2 Yy

1 ;. 4 . R
Myt e SRS, G 0PSSO R L (®)

Here 7 ; is a projection operator on the space of the holomorphic differentials

(3= 1 & -1
JZ;_ 5‘1"?:1&!2(11'“9)1',07’

¥_ is a quadratic holomorphic differential, and &;W¥,, = 0; the Green’s function
G {17(z,v)" satisfies the equation

A({')Gf)(z, v)¥ =478 (2, v).
Equation (8) holds when /3>2, since there are no null modes of the Laplacian A{ ¥’ in

this case.! The cases in which 4 = 0,1 are analyzed below.

Relation (8) which we found is important in that it links the second (and higher-
order) derivatives of the Green’s function with the first derivatives. Remarkably, Eq.
(8) is covariant under the Weyl transformation, which can be proved by directly
varying diagrams a) and b) in Fig. 1.

Let us analyze Eq. (8) for the Riemannian surfaces of type 2 =0,1. A sphere
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(A =0) has no Abelian or quadratic differentials. As a result, relation (8) can be
written in simpler form

(3,G(z, w))* =ViG(z, w), h=0. 9)
It is easy to verify that the Green’s function
lz-z2'|?
(+12PX1+12P)

G(z,z')=-In

which corresponds to the standard metric on the sphere,’ satisfies Eq. (9).

In the case of a torus (A= 1) w, = 1, and ¥,, = const. Equation (8) can there-
fore be written in the form"

(3.G(z—w))? = 8G(z —w) + ifdzya G(z-y)3 G(w-y)+const, h=1. (10)
"z z T¢- z w ’

The last term in (8) vanishes because of the relation §d*yG(z —y) =0 (Refs. 1 and
3).

The scalar Green’s function on the torus is constructed in the terms of &,: the
Riemann function!
0,(z—21) , m

- —(z—-z-2'12'). (11)

G(z =7')=—1n|
( 0'1 ©,7) 2r,

To prove Eq. (10), we note that the Weierstrass p-function p(z — )
=J?G(z — w) is holomorphic when z#w and that it has a Laurent expansion

+ regular terms.

pz-w)= P

On the other hand, it is easy to show that the combination
1
(3,6 -w))* - —[d?’y3,Gz-y)3 ,G(w~Y) (12)
T2

is also holomorphic when z# o and that it has the same pole as p. This means that the
functions p(z — @) and (12) differ only by a constant, incomplete agreement with Eq.
(10).

Note that identity (10) gives a new integrated representation of the Weierstrass
function only in terms of the function 8,. Furthermore, it follows from relations (3),
(5), and (6) that G(z,z:e€) is a constant for the sphere and torus.

The principal result obtained by us is Eq. (8), which is based on the condition
that quantum field theory (1) be consistent on the Riemann surface. Accordingly, we
have demonstrated how some nontrivial mathematical information can be extracted
from the physical theory.

We believe that these results could be useful in calculating higher-order loop
corrections in the string equations of motion on the basis of the o-model method.’
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