Long-range order in 2D Heisenberg model with frustration

A. F. Barabanov and O. A. Starykh

Institute of High-Pressure Physics, Academy of Sciences of the USSR

(Submitted 25 January 1990)

Pis'ma Zh. Eksp. Teor. Fiz. 51, No. 5, 271-274 (10 March 1990)

Indications of the possible existence of a spin-liquid state have been found for a 2D Heisenberg model with frustration at values of the $\alpha = J_2/J_1$ near 0.6.

The spin subsystem of the insulating state of a CuO_2 plane of a high- T_c superconductor can be described well by a 2D Heisenberg model on a square lattice with an antiferromagnetic interaction of nearest S=1/2 spins. Substantial progress in the study of this model was achieved in Refs. 2-5, where it was shown that there is an exponentially small (along T) gap in the spectrum of spin excitations and that a longrange order arises at T=0. Experiments have revealed that the long-range order is lost upon spin doping of the CuO_2 plane. It is believed that the doping of the plane with holes leads to a frustration, i.e., to an interaction between remote spins. The 2D model has thus been the subject of active research recently in connection with the possible existence of a spin-liquid state. In this letter we are reporting results of a study of a model with frustration in the limit $T\rightarrow 0$; these results indicate the possible realization of a spin-liquid state.

The Hamiltonian of the model is

$$H = 1/2J_1 \sum_{n,g} S_n S_{n+g} + 1/2J_2 \sum_{n,d} S_n S_{n+d}, \qquad (1)$$

where $J_1,J_2>0$ describe the interaction between the nearest neighbors (the vectors g) and the next-nearest neighbors ($\mathbf{d} = \pm \mathbf{g}_x \pm \mathbf{g}_y$) on the square lattice.

For Hamiltonian (1) in the classical limit $(S \gg 1)$ we know that at $\alpha = J_2/J_1 < 1/2$ (case I) there is a two-sublattice state, while at $\alpha > 1/2$ there is a stripe state (case II).⁸ In the quantum limit (S = 1/2), these cases correspond to different vacuum states: case I to $S_n^z = (1/2)(-1)^n$, and case II to $S_n^z = (1/2)(-1)^{n_x}$. We write the spin operators in terms of boson operators for these vacuum states, using a Dyson-Maleev antiferromagnetic transformation.⁵

In case I, the Hamiltonian becomes

$$H = H_1 + H_2^a + H_2^b$$

$$H_{1} = -\frac{1}{2}J_{1}N + \frac{1}{2}J_{1}\sum_{\langle nm \rangle}$$

$$\times \{a_{n}^{+}a_{n}^{-} + b_{m}^{+}b_{m}^{-} - a_{n}^{+}b_{m}^{+} - a_{n}b_{m}^{-} + a_{n}^{+}(b_{m}^{+} - a_{n}^{-})^{2}b_{m}^{-}\}$$

$$\dot{m} = n + g, n \in A, m \in B$$
(2)

$$H_{2}^{a} = \frac{1}{4}J_{2}N - \frac{1}{2}J_{2}\sum_{\langle \mathbf{n}_{1}\mathbf{n}_{2}\rangle} \times \{a_{\mathbf{n}_{1}}^{\dagger}a_{\mathbf{n}_{1}} + a_{\mathbf{n}_{2}}^{\dagger}a_{\mathbf{n}_{2}} - a_{\mathbf{n}_{1}}^{\dagger}a_{\mathbf{n}_{2}} - a_{\mathbf{n}_{2}}^{\dagger}a_{\mathbf{n}_{1}} + a_{\mathbf{n}_{1}}^{\dagger}a_{\mathbf{n}_{2}}^{\dagger}(a_{\mathbf{n}_{1}} - a_{\mathbf{n}_{2}})^{2}\},$$

$$\mathbf{n}_{2} = \mathbf{n}_{1} + \mathbf{d}; \ \mathbf{n}_{1}, \mathbf{n}_{2} \in A.$$

Here H_2^b , which describes the interaction of spins on sublattice B, is similar to H_2^{α} .

As in Ref. 5, we consider the Hamiltonian H given by (2) in the mean-field approximation with the auxiliary condition $\langle S_n^z \rangle = 0$, in order to satisfy the Mermin-Wagner theorem⁹ at $T \neq 0$. We introduce the following expectation values:

$$Q = \langle a_{\mathbf{n}}^{\dagger} b_{\mathbf{n}+\mathbf{g}}^{\dagger} \rangle = \langle a_{\mathbf{n}}^{\dagger} b_{\mathbf{n}+\mathbf{g}} \rangle; \quad \Delta = \langle a_{\mathbf{n}}^{\dagger} a_{\mathbf{n}+\mathbf{d}} \rangle;$$

$$\langle a_{\mathbf{n}}^{\dagger} a_{\mathbf{n}} \rangle = \langle b_{\mathbf{m}}^{\dagger} b_{\mathbf{m}} \rangle = \frac{1}{2}.$$
(3)

The last equality is equivalent to the requirement $\langle S_n^z \rangle = 0$ and is taken into account through the introduction of a "chemical potential" λ . After the expectation values in (3) are singled out, and after a transformation is made to the momentum representation, Hamiltonian (2) can be diagonalized easily through a standard spin-wave u-v transformation. As a result, the spectrum of excitations, ω_k , self-consistent equations (3), and the ground-state energy E_0^T per site become

$$\omega_{\mathbf{k}} = \left[\epsilon_{\mathbf{k}}^{2} - (4QJ_{1}\gamma_{\mathbf{gk}})^{2} \right]^{1/2}, \qquad \epsilon_{\mathbf{k}} = \lambda + 4J_{1}Q - 4J_{2}\Delta(1 - \gamma_{\mathbf{dk}}), \qquad (4)$$

$$\gamma_{\mathbf{gk}} = \frac{1}{2} \left(\cos k_{x}g + \cos k_{y}g \right), \qquad \gamma_{\mathbf{dk}} = \cos k_{x}g \cos k_{y}g; \qquad E_{0}^{\mathbf{I}} = -2(J_{1}Q^{2} - J_{2}\Delta^{2}),$$

$$Q = 2N^{-1} \sum_{\mathbf{k}} 4Q\gamma_{\mathbf{gk}}^{2} \omega_{\mathbf{k}}^{-1} \left(\nu_{\mathbf{k}} + \frac{1}{2} \right); \qquad \Delta = 2N^{-1} \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}\gamma_{\mathbf{dk}} \omega_{\mathbf{k}}^{-1} \left(\nu_{\mathbf{k}} + \frac{1}{2} \right),$$

$$2N^{-1} \sum_{\mathbf{k}} \left\{ \epsilon_{\mathbf{k}} \omega_{\mathbf{k}}^{-1} (\nu_{\mathbf{k}} + \frac{1}{2}) - \frac{1}{2} \right\} = \frac{1}{2}. \qquad (5)$$

Here Σ_k means a summation over the magnetic Brillouin zone, $\nu_k = \nu(\omega_k)$ is the Bose function, and $g = |\mathbf{g}|$ is the lattice constant.

In addition, as in Refs. 2-5, system (5) has a solution with an exponentially small gap $\lambda = \exp(-A/T)$, where A is a constant as $T \to 0$. The finite value of A(T=0) is interpreted by analogy with the Bose condensation of excitations with k=0 (Refs. 3 and 4). It gives rise to a long-range order at T=0. In our case we have

$$\langle S_n S_{n+1} \rangle = (-1)^{\lfloor l \rfloor} (m_0^{1} + 0(l^{-1}))^2, \quad m_0^{1} = \frac{A}{2\pi (J_1 Q - 2J_2 \Delta)}, \qquad g \ll l \ll \zeta,$$

$$\zeta = \exp(A/T), \qquad T \to 0 \, , \tag{6}$$

FIG. 1. The effective spin $m_0^{\text{I,II}}$ as a function of α .

where $m_0^{\rm I}$ is the effective spin, ζ is the correlation length, and A, Q, and Δ are functions of α . A numerical solution of system (5) in the limit $T \to 0$ yields the values of $m_0^{\rm I}$ and $E_0^{\rm I}(\alpha)$ ($J_1 = 1$), shown in Figs. 1 and 2. It turns out that at $\alpha \approx 0.61$ the quantities A and $m_0^{\rm I}$ vanish; i.e., the long-range order disappears.

In case II we introduce the expectation values

$$q = \langle a_{\mathbf{n}}^{+} b_{\mathbf{n}+\mathbf{d}}^{+} \rangle, \qquad \rho_{\mathbf{x}} = \langle a_{\mathbf{n}}^{+} b_{\mathbf{n}+\mathbf{g}_{\mathbf{x}}}^{+} \rangle, \qquad \rho_{\mathbf{y}} = \langle a_{\mathbf{n}}^{+} a_{\mathbf{n}+\mathbf{g}_{\mathbf{y}}}^{+} \rangle, \tag{7}$$

which are determined by the structure of vacuum state II: ferromagnetic along the Y direction and antiferromagnetic along the X direction. The system of self-consistent equations which arises is analogous to system (5) and leads to

FIG. 2. Ground-state energy of the two phases, $E_0^{1.11}$, as a function of α . Dashed line— $E_0(\alpha)$ from Ref. 11.

$$\omega_{\mathbf{k}} = \left[\epsilon_{\mathbf{k}}^{2} - (4J_{2}q\gamma_{\mathbf{dk}} + 2J_{1}\rho_{x}\cos k_{x}g)^{2} \right]^{1/2},$$

$$\epsilon_{\mathbf{k}} = \lambda + 4J_{2}q + 2J_{1}\rho_{x} - 2J_{1}\rho_{y} (1 - \cos k_{y}g),$$

$$E_{0}^{II} = -2J_{2}q^{2} - J_{1}(\rho_{x}^{2} - \rho_{y}^{2}).$$
(8)

The corresponding energies E_0^{11} and effective spin m_0^{11} are shown in Figs. 1 and 2. At $\alpha \approx 0.55$, the long-range order disappears on the large- α side.

For both phases, the form of ω_k in (4) and (8) is qualitatively the same as the spectrum in the approximation of linear spin waves. For S=1/2, however, this approximation exaggerates the role of quantum fluctuations and leads to the conclusion that there is no solution in a region of finite size along α near $\alpha=0.5$. In our analysis, the transition from one phase to the other occurs at $\alpha \approx 0.55$ -0.6. Points $m_0 \to 0$ corresponds to metastable phases, which lie near a stable phase ($\Delta E \approx 0.01 \, J_1$). This behavior agrees well with the results of a numerical diagonalization of a 4×4 cluster, whose energy is shown in Fig. 1. Periodic boundary conditions for a cluster reduce E_0 from the exact value for an infinite system, primarily at $\alpha > 0.5$. In each limit, $\alpha \to 0$ ($\alpha \to \infty$), the energy E_0^1 (E_0^{11}) agrees well with the known value $0.667 \, J_1(J_2)$. The presence at $\alpha \approx 0.6$ of two phases, spaced closely along the energy scale, with small values of m_0 , indicates an instability of the long-range order with respect to the formation of a possible chiral spin-liquid state. A finite, temperature-independent gap in the ω_k spectrum should correspond to this state.

```
<sup>1</sup>Y. Endoh, Phys. B 156, 839 (1989).
```

Translated by Dave Parsons

²D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988); Phys. Rev. Lett. 61, 617 (1988).

³J. E. Hirsch and S. Tang, Phys. Rev. B **39**, 2850 (1989).

⁴D. Yoshioka, J. Phys. Soc. Jpn. **58**, 1524 (1989).

⁵M. Takahashi, J. Phys. Soc. Jpn. **58**, 1524 (1989).

⁶M. Inui et al., Phys. Rev. B 38, 6631 (1988).

⁷P. W. Anderson, Science **235**, 1196 (1987).

⁸X. G. Wen et al., Phys. Rev. B 39, 11413 (1989).

⁹N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

¹⁰P. Chandra and B. Doucot, Phys. Rev. B 38, 9335 (1988).

¹¹E. Dagotto and A. Moreo, Phys. Rev. B 39, 4744 (1989).

¹²Liang et al., Phys. Rev. Lett. **61**, 365 (1988).