A new Kondo lattice $CeSi_{2-x}Ga_x$

V. V. Moshchalkov, O. V. Petrenko, M. K. Zalyalyutdinov, and I. Chirich M. V. Lomonosov State University, Moscow

(Submitted 7 February 1990) Pis'ma Zh. Eksp. Teor. Fiz. **51**, No. 5, 286–289 (10 March 1990)

Substitution of Ga for Si in $CeSi_2 = {}_x Ga_x$ leads to a suppression of the magnetic ground state of Ce^{3+} ions and at x > 1 to a change to conditions corresponding to a nonmagnetic Kondo lattice with heavy Fermi electrons which are characterized by a huge coefficient $\gamma \sim 1800 \, \text{mJ/(mole \cdot K}^2)$.

By varying the composition of the Kondo lattice it is possible to change the ratio between the Kondo temperature $T_{\rm K}$ and the temperature $T_{\rm RKKY}$ which characterizes the center-to-center interaction of the spins through the spin-density oscillations. The temperatures $T_{\rm K}$ and $T_{\rm RKKY}$ depend on the exchange-interaction parameter J in different ways: $T_{\rm K} \sim E_F \exp\left[-1/(Jg(E_F))\right]$, where $g(E_F)$ is the density of the electronic states at the Fermi level, $T_{\rm RKKY} \sim J^2/W$, and W is the band width. This possibility is made use of to cover the entire range of states between the magnetic Kondo

FIG. 1. Temperature dependences of the specific heat C(T) of $CeSi_2 = {}_xGa_x$ ($\triangle -x = 0.7$; $\bigcirc -x = 1.0$; + -x = 1.2; $\blacksquare -x = 1.3$). Inset—Concentration dependence of the magnetic-order temperature.

lattice ($T_{\rm K} \leq T_{\rm RKKY}$) and the nonmagnetic Kondo lattice ($T_{\rm K} \geqslant T_{\rm RKKY}$). The electronic contribution to the specific heat γT for nonmagnetic Kondo lattices should increase as the given compound approaches the critical region $J = J_c$, since $\gamma \sim 1/T_{\rm K}$ in nonmagnetic Kondo lattices and $T_{\rm K}$ decreases as $J = J_c$ is approached from the right (see the inset in Fig. 2).

The empirical method of obtaining nonmagnetic Kondo lattice with a surface-enhanced (giant) Abirkosov-Sula resonance, which we discussed above, $\gamma \sim g^R$ (E_F), is the principle upon which the search for new systems with heavy fermions is based.

In our study we have conducted this search by varying the composition of the system $\operatorname{CeSi}_{2-x}\operatorname{Ga}_{x}$. We used polycrystalline samples with x=0.7-1.3 to measure the temperature dependence of the specific heat C(T) and the resistivity $\rho(T)$. At $T\sim 10$ K the system $\operatorname{CeSi}_{2-x}\operatorname{Ga}_{x}$ acquires, in the single-phase region of gallium concentrations x>0.5 (Ref. 2), a ferromagnetic order at reduced local magnetic moments of Ce^{3+} due to the Kondo effect. With an increase in the gallium concentration from x=0.9 to x=1.3, the magnetic transition becomes progressively more diffuse, while the magnetic-transition temperature (the inset in Fig. 1) and the magnetic-moment saturation decrease rapidly.

At T=10.5 K the specific heat of the compound $CeSi_{1.3}Ga_{0.7}$ (Fig. 1) behaves anomalously during the ferromagnetic transition. At T=8-9 K the C(T) peak for the composition with x=1 is broadened appreciably. The presence of a magnetic transi-

tion makes it more difficult to determine the value of γ . Extrapolation of high-temperature regions, T > 10 K, on the C/T axes from T^2 yields the value $\gamma_{\rm extrap} \sim 100$ mJ/(mole·K²), which is approximately the same for all compositions with x = 0.7-1.3.

At x=1.2 and 1.3, the shape of the C(T) curves is characteristic of nonmagnetic Kondo lattices with a low Kondo temperature, in which $T_{\rm K} < \Delta_{\rm CF}$, where $\Delta_{\rm CF}$ is the f-level splitting in a crystalline field. If the lowest state which is split off by the crystal field is a doublet j=1/2, then the Abrikosov-Sula resonance is exactly at the Fermi level ($E^R=E_F$), since the degree of filling of the resonance at $T < T_{\rm K} \Delta_{\rm CF}$ is determined by the degeneracy of the lowest state that has been split off. The low-temperature maxima on the C(T) curve are not related to the magnetic order, whose absence was indicated by the measurements of the magnetization up to 1.5 K. The specific heat⁴ calculated in the Coqblin-Schrieffer model by the Wiegmann-Andrew method on the basis of the equation

$$C(T) = 2jk_{\rm B} \int_{-\infty}^{+\infty} \frac{g^{R}(E)(E/(2k_{\rm B}T))^{2}}{\cosh^{2}(E/(2k_{\rm B}T))} dE, \tag{1}$$

where the shape of the Abrikosov-Sula resonance near $E_F g^R$ (E) is approximated by a Lorentzian, is in good agreement with the experimental curves of C(T) for $T_K^{\text{theor}} \approx 4$ K. The calculated and experimental (for x = 1.3) curves are shown in Fig. 2

FIG. 2. Experimental temperature dependence and temperature dependence calculated from Eq. (1) C/T (solid line) of nonmagnetic Kondo lattice of $CeSi_{0.7}Ga_{1.3}$. The inset shows the electronic coefficient γ plotted as a function of the exchange interaction parameter J.

in C/T(T) coordinates. As can be seen from Fig. 2, the value of the parameter $\gamma(0)$ is $\sim 1800 \text{ mJ/(mole \cdot K}^2)$. Substituting this value of $\gamma(0)$ in the expression⁵

$$T_{\mathbf{K}}^{\gamma} = \pi^2 R / (6\gamma) \tag{2}$$

we find $T_{\rm K}^{\gamma} \approx 3.3$ K, in nearly complete agreement with the value of $T_{\rm K}^{\rm theor}$, which was used as a parameter in Eq. (1). A plot of the Hall coefficient $R_H(T)$ for the compounds with x > 1, characteristic of nonmagnetic Kondo lattices, was previously observed by Brandt *et al.*⁶

By calculating the area under the curve of the specific heat with the C/T(T) axes we were able to estimate the entropy associated with the low-temperature anomaly. For all tested compounds an increase in the entropy is approximately the same: $\Delta S \sim 4.69 \text{ J/K} \approx R \ln 2$. Consequently, the magnetic level j = 5/2 of the Ce³⁺ ions is strongly split by the crystalline field, and the lowest energy state is the doublet. It can

FIG. 3. Temperature dependences of the magnetic components of the resistivity $\rho_{\rm m} = \rho({\rm CeSi}_{2-x}{\rm Ga}_{x}) - \rho({\rm LaSi}_{2-x}{\rm Ga}_{x})$ [1—x=1; 2—x=1.2; 3—x=1.3]. The temperature peaks $T_{\rm max}$ are indicated by arrows.

be assumed that the general arrangement of the levels is similar to the arrangement of the levels in a $CeSi_x$ Kondo lattice, whose crystal structure is the same as that of the $CeSi_2 - {}_xGa_x$ system, with $\Delta_{CF1} = 160$ K and $\Delta_{CF2} = 330$ K (Ref. 7). In this case two characteristic Kondo temperatures must be introduced: T_K^{high} and T_K^{low} (Ref. 8):

$$T_{K}^{h} = (T_{K}^{l} \Delta_{CF1} \Delta_{CF2})^{1/3}.$$
 (3)

The value of T_{K}^{h} can be estimated from the position of the maxima on the temperature dependences of the magnetic component $\rho_m(T)$, which was determined by subtracting the resistivity of the lanthanum compound LaSi₂ - xGa_x from the resistivity of $\text{CeSi}_2 = {}_x \text{Ga}_x$. The temperature maximum T_{max} on the $\rho_{\text{m}}(T)$ curves increases with increasing gallium concentration (Fig. 3), and the value of T_{max} is in agreement with the value of T_K^h which is estimated from γ_{extrap} . Using Eq. (3), we find that $T_{K}^{\prime} \sim 10$ K, which is close to the values of T_{K}^{\prime} and T_{K}^{theor} . Accordingly, an increase in the gallium concentration causes the exchange interaction parameter to increase to J_c , and CeSi₂ = _xGa_x undergoes a transition from the magnetic lattice to a nonmagnetic Kondo lattice. In the case of a magnetic composition with $x = 0.7 T_K^h \approx T_{\text{max}} \approx 93 \text{ K}$, $T_{\rm K}^{\prime} \approx 9 \, {\rm K} < T_{\rm m}$ and the low-temperature Kondo spin fluctuations are suppressed due to the magnetic ordering of the Ce³⁺ moments. For CeSiGa $T_K^h \approx 106$ K, $T_K^l \approx 14$ K, and the relation $T_{K}^{l} \geqslant T_{m}$ is satisfied most exactly. This leads to a broadening of the magnetic transition because of the Kondo fluctuations of the magnetic moment. The compositions with x = 1.2-1.3 are nonmagnetic Kondo lattices ($T_{K}^{h} \approx 119$ K, $T_{\rm K}^{\prime} \approx 19 \,\rm K$) with $\gamma \sim 1800 \,\rm mJ/(mole \cdot K^2)$, in which the presence of heavy fermions is associated with the generation of a giant Abrikosov-Sula resonance with $E^R = E_F$.

Translated by S. J. Amoretty

¹V. V. Moshchalkov and N. B. Brandt, Usp. Fiz. Nauk **149**, 585 (1986) [Sov. Phys. Usp. **29**, 725 (1986)]. ²H. Mori *et al.*, Solid State Commun. **49**, 955 (1984).

³V. V. Moshchalkov et al., Fiz. Nizk. Temp. 13, 1286 (1987) [Sov. J. Low Temp. Fiz. 13, 723 (1987)].

⁴V. T Rajan, Phys. Rev. Lett. **51**, 308 (1983).

⁵P. B. Vigman, Pis'ma Zh. Eksp. Teor. Fiz. **31**, 392 (1980) [JETP Lett. **31**, 364 (1980)].

⁶N. B. Brandt et al., Fiz. Tverd. Tela 30, 336 (1988) [Sov. Phys. Solid State 30, 310 (1988)].

⁷N. Sato et al., Solid State Commun. **51**, 139 (1984).

⁸K. Hanzava et al., J. Magn. Magn. Mat. 47-48, 357 (1985).