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Topologically stable structural defects at the interface between the A and B phases
of superfluid *He are classified. Among these defects there are vortices with ends
and boojums.

The interface between the 4 and B superfluid phases of liquid *He is a 2D entity
which is presently being studied experimentally. The topological defects which may
exist at an interface were studied in Ref. 1. The most interesting of these defects are
monopole-like defects consisting of vortex lines which have an end point at the 4B
interface. In the present letter we classify defects on the basis of the particular struc-
ture of the 4B interface.

The order parameter in superfluid *He is the 3 X 3 matrix 4,,. In the equilibrium
state of the 4 phase, 4, is expressed in terms of the unit vectors d, e,, and e,:
A4 = A, d, (e, +ie,;), where e, e, = 0, and the vector 1= [e,, e,] gives the direc-
tion of the orbital angular momentum of the Cooper pairs. In the equilibrium state of
the B phase, 4, is expressed in terms of the 3D rotation matrix R: 4 %, = Aye*R,,,,
where A, and @ are the amplitude and phase of the order parameter of the B phase.
The interface at which these two phases are linked creates reciprocal boundary condi-
tions, which link the degeneracy parameters of the 4 phase (d, e,, e,, and 1) with
those of the B phase (® and R). These boundary conditions depend on the structure
of the interface. Various 4B interfaces with various types of symmetry were studied in
Ref. 2. Near T, the most stable 4B interface has the following asymptotic expressions
for the order parameter on the two sides of the interface:*?
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where x runs along the normal to the interface. This is only one of the degenerate
states of the interface; others are found by using the symmetry operations which form
the group:

G = UQ1) X SO(2)F x S0(3) . (2)

Here SO(3)® is the spin-rotation group, which acts on the Greek index of the order
parameter, SO(2)" is the group of orbital rotations around the normal %, which act on
the Latin index of the order parameter, and U(1) is the group of gauge transforma-
tions, which alter the phase of the order parameter. As a result, the general expression
for the order parameter far from the 4B interface is
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where R ® is the matrix of 3D spin rotations, and R ” is the matrix of orbital rotations
around x. It can be seen from (1) and (3) that the asymptotic expressions for the
phases are not arbitrary. The orientation of the spin vector d of the 4 phase is related
to the orientation of the matrix R of the B phase, since we have d = R5%, and
R = RS(R*%) . The orbital vector 1 of the 4 phase is oriented parallel to the plane of
the interface, since 1 = R, but the direction of 1 in the plane of the interface is not
fixed by the orientation of the matrix R in the B phase, since the orbital rotation of the
order parameter of the B phase can be offset by an opposite rotation of the spin space.

Equation (3) does not contain equivalent states, since each element of group G
changes the state of the 4 phase, the state of the B phase, or the states of both phases.
This result means that the space of degenerate states of the 4B interface coincides with
the 5D space of group G; i.e., R,z = G. The fundamental homotopy group is

T (R, 5)= ZXZXZ,, 4)

so point defects at the 4B interface are described by the three integers N = (N, N,,
N3). Here N, is the number of quanta of circulation of the superfluid velocity along a
contour on the 4B interface which loops a defect; NV, is the number of rotations of the
vector 1 as the defect is looped along the 4B interface; and V5, which is from the group
z, consisting of the two elements O, 1, describes the singularities in the field of the
matrix R. We now need to determine how the defects at the interface are related to
defects in the interior and whether they are end points of singular lines coming out of
the volume or isolated point defects on the 4B interface. To resolve these questions, we
can use the method of relative homotopy groups, which have been used to classify
defects at the surface of an ordered medium. It follows from this analysis that a defect
with an odd value of N, + N, necessarily propagates into the 4 phase, while one with
an even value of N, + N, has no singularities in the 4 phase. A defect with a nonzero
N, is an end point of a B-phase vortex with &V, circulation quanta, while a defect with
N; = 1is an end point of a disclination in the B phase. The quantity N, has no effect at
all on the behavior of the order parameter in the B phase. As a result, the defects can
be grouped in five categories.

1. The end points of line singularities of the 4 phase without a singularity in the B
phase. These are defects with topological charges N = (0.2k + 1.0). The elementary
defect N = (0, 1, 0) is a disgyration in the field of the vector 1 which terminates at the
AB interface [Fig. 1(a)] or an end point of a singular vortex [Fig. 1(b)], depending
on which of the line defects of the 4 phase has the lower energy.

II. The end points of line singularities of the B phase without a singularity in the
A phase. Here there are two subtypes. Ila. The elementary representatives of this
subtype are defects with N= ( + 1, + 1.0). These are the end points of B-phase
vortices with N, = + 1 circulation quanta. The end points are point defects in the
field of the vector 1 of the A phase, i.e., boojums [Fig. 2(a)]. A boojum is character-
ized by two quantum numbers. One is the number of rotations of the vector 1 over the
interface, V,. the second is the degree of the mapping of the hemisphere around the
boojum from the A-phase side onto the sphere of the vector 1. It can be expressed in
terms of an integral in the yz plane which passes parallel to the 4B interface in the A
phase: N = 1/47 § dydz1[ 3,1, d,1]. According to the Mermin-Ho relation, it is relat-
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FIG. 1. a—Disgyration in the field of the vector 1 (shown by the arrows); b—singular vortex in the 4
phase. Each terminates at the interface between the 4 and B phases at a point at which the vector 1 rotates:
N, = 1. The two defects belongs to the same topological class.

ed to the number of circulation quanta in the vortex which arrives at this point from
the B phase: N = (1/2)N,. IIb. These are defects with N = (0, 0, 1); they are end
points of a B-phase disclination. In contrast with vortices, the disappearance of a
disclination at the interface does not require the existence of boojums in the 4 phase
[Fig. 2(b)]. The other type-II defects are combinations of the elementary defects [see,
for example, Fig. 2(c)].
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FIG. 2. a,c—Quantized vortices with (a) one and (c) two circulation quanta in the B phase terminate at A-
phase boojums; b—disclination of the B phase terminates at the AB interface without the formation of a
boojum in the 4 phase.
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II1. Points at which line defects intersect the AB interface. An elementary defect
of this type is a single-quantum vortex which intersects the 4B interface: N = (1,0,0)
[Fig. 3(a)]. It can be thought of as a combination of the defects in Figs. 1(b) and
2(a): (1,0,0) = (0, 1, 0) + (1, — 1.0) [the defect in Fig. 2(a) must be taken with
the opposite N, = — 1].

;V. Isolated point defects at the AB interface: 4B boojums. The elementary defect
of this type, N = (0, 2, 0) [Fig. 3(b)], can be generated by combining two of the

defects in Fig. 1(b): (0, 2, 0) = (0, 1, 0) + (0, 1, 0). Here we are making use of the
known fact that a connection of two singular lines in the 4 phase leads to a nonsinen-
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FIG. 3. a—Quantized vortex which intersects the 4B interfaces without the formation of boojums; b—
isolated boojum without singularities in the volume

lar state. According to the Poincaré theorem regarding the index of a vector field (1)
tangent to a closed surface, a boojum of this sort should exist at the surface of a
droplet of a droplet of the A phase in the B phase or one of the B phases in the 4 phase.

This classification of defects is determined by the particular structure of the order
parameter in the 4B interface, which dictates the reciprocal boundary conditions for
the degeneracy parameters of the 4 and B phases. For interfaces of other types,** the
classification will be different.
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