Quantization of 3D particle with twisting: Toward
arelativistic theory of an anyon
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A quantum particle with twisting in a pseudo-Euclidean 3D space is characterized
by an unquantized spin (it is an anyon) and by an infinite set of internal
excitations.

Particle and string theories in which the action contains high-order derivatives of
dynamic quantities have recently attracted considerable interest.”> For a 3D point
particle there exists a special invariant of this type: the twisting
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A quantum theory of a particle with twisting has been constructed for the Euclidean
case by means of a path integral® (the measure of the integration was discussed in
detail in Ref. 4). For certain values of the coefficient with which (1) appears in the

action, a transmutation of the spin occurs.
In the present letter we consider a particle with twisting in a pseudo-Euclidean
space with the action

S=—mf\/—5c—2.dr+cT, (2)

where x, (7), u =0, 1, 2, is a timelike path, and ¢ > 0. Here are our results. A canoni-
cal Dirac quantization® leads, after a redefinition of the Poisson brackets, to the spin
algebra of the SU(1,1) group. The wave function of a particle satisfies the equation

(k“S“— cm)y =0, (3)

where k * is the energy-momentum operator, and S, are the generators of the SU(1,1)
representation (more precisely, of its universal covering) with > = c(c — 1). This
equation describes a particle with an unquantized spin ¢ (the relativistic version of an
anyon®). Since the representation is infinite-dimensional, the particle is characterized
by an infinite spectrum of internal excitations. In the Euclidean version, the parameter
¢ is quantized, and Eq. (3) becomes a Dirac equation with a finite spectrum.

For a canonical formulation of theory (2), we introduce timelike and spacelike
unit vectors e, and n, such that x, = ge,, ¢, = On,,, and we switch to the action

S = fdr (- mq + ce*”? e“nvﬁ}\ - k“(JE“ —qe,)
—ph(e, — Qn, ) +a(e®—1)+p(n*+1), (4)
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where k,, p,, @, 3 are Lagrange multipliers. We see that (x,,k,) and (e,,p,) are
canonical pairs.

The complete system of constraints (of the first and second kinds) for the case of
a nonvanishing curvature { = Q/q#0 is

o = ﬂ-a = 0’ ﬂ =-n'p = o’ Q —c” lqellrlv')\eunvkx = 0, ”Q = 0,
2 = Hy = Ky = B YA =
n‘+ 1=0, e n, 0, n, 0, m, t ce® e n, 0,

e —1=0, p=0,

T, =0 (5)
k” eu - m =09 (6)

where 7 represents canonical momenta. Using this system, we can eliminate (4,7, ),
(u,7,) and (Q,m5). In addition, we can express (n,,7,,) in terms of the remaining
variables, but since n, and 7, are nonzero, the redefinition of the Poisson brackets is
nontrivial in this case. Let us calculate a canonical 2-form on the subspace determined
by the constraints in the parametrization e, = (coshf, sinhé cose, sinhf sing):

dp¥/\de, + dml Adn, =csinh 0doNdy , (7
Hence {6,¢} = — (csinhf) = or, equivalently,
{e,e,} =c le,, et (8)

[In a Euclidean space, Eq. (7) would be replaced by ¢ sinddd Adg.] We thus con-
clude that the particle is described by a Hamiltonian H = g(m — k*e, ) with con-
straints of the first kind as in (5) and in (6) and with algebra (8) for the components
of the unit vector e,,.

It can be shown that the classical path of a particle is a helix. The energy-momen-
tum k* and the angular momentum M* are conserved. The angular momentum is
given by

b= gMVA .
M € (kak tep tnm .,

)= e"”’"kak + cet | (9)
i.e., the particle acquires a spin ¢ along the direction of the velocity. In the classical
theory, the relation k> = m”> — ¢*£ 2 follows from the system of constraints, where ¢ is
the constant curvature of the path. This relation was derived by a different method in
Ref. 7, and it was suggested that it implies the presence of a tachyon in the quantum
theory. We will see below that this is not the case.

We represent the phase space of the system as the direct product of the planar
space of the variables (x,k) and a 2D hyperboloid (or a sphere, in the Euclidean case).
The quantization on the hyperboloid is carried out with the help of coherent states of
the SU(1,1) group.® The quantities S, = ce, are the generators of the group, and
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constraint (6) becomes Eq. (3). We assume that the state vector ¥ belongs to a
unitary representation whose basis vectors are specified by a nonnegative integer :

Sele,n)= (¢ tn)lcn). (10)

The mass spectrum is then

E = n=0.1 .. . (11)

This spectrum is not cut off, even with integer and half-integer values of ¢, in which
case a Euclidean quantization is possible.

In summary, we have shown that quantum theory (2) describes a relativistic
particle with an unquantized spin ¢ and with an infinite set of internal excitations in a
3D pseudo-Euclidean space. It would seem possible to construct a second-quantized
version of the theory by replacing ¢ in (3) by an operator function.
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