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Umklapp processes in the quasi-1D conductors (TMTSF),X cause qualitative
changes in the phase diagrams of these conductors in a magnetic field. The result is
the coexistence of spin density waves characterized by different wave vectors.

The organic superconductors (TMTSF),X, where X = ClO,, PF,, have a com-
plicated phase diagram in a magnetic field. The primary distinctive feature of the
phase diagram is a cascade of transitions between different spin-density-wave (SDW)
subphases.' There is a related quantum Hall effect.*’

According to Ref. 6, the explanation of the metal-SDW phase transition lies in a
“one-dimensionalization” of the electron spectrum in a magnetic field and the appear-
ance of an instability in the “Peierls channels.” The insulating subphases which arise
in the process are described by an order parameter A(r) which has the form of two
plane waves with a quantized value of the longitudinal wave vector:”®

Afr)= A, exp(ip,x + iny/b + inz/c) +cC.C., (1)

Py =200, fug + 20 (1)

Here w, is the cyclotron frequency of the motion of the electrons along unclosed orbits
of the quasi-1D electron spectrum,

e(p) = tvp(p, ¥ pp) + 215008 (pyb) + 2t cos (2p,b) + 2t cos (p,c) 2)
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in a traverse magnetic field H||Z; pr and v are the “Fermi” momentum and velocity;
t,, t1,and t, are the overlap integrals of the wave functions across the chains; and # is
an integer.

A more detailed study of the (TMTSF),XClO, phase diagram resulted in the
discovery of a fine structure of SDW subphases.® The explanation'® of this structure as
a consequence of fractional values of 7 in (1') does not appear to have a really solid
basis, since these states do not correspond to an energy minimum.

In our opinion, a fundamental shortcoming of the theory of an SDW induced by a
magnetic field as it exists today is that each subphase is described by means of single
value of n in Eq. (1').

Below we show that umklapp processes, which have heretofore been ignored, lead
to the simultaneous existence of SDWs with different values of #. The region near the
transition temperature is analyzed separately; in that region, there is the possibility
that a hierarchy of subphases can be established and that the most important sub-
phases can be singled out. As a result, the phase diagram would break up into regions
of two types, in which either four plane waves or eight exist simultaneously (Fig. 1).

Let us consider the second-order terms in the expansion of the free energy. The
existence of a twofold commensurability along the chains, 2p, = 7/a*, where a* is the
lattice constant, leads to a coupling of the plane waves with n = n,and n = — n, from
Eq. (1'). The temperature of the transition to the SDW state is determined by the
vanishing of the determinant in the matrix equation for the vector order parameter
(An(,’ A* n, ):

| 18I0 (@) ~ g (oo DI 00, £51n(25) +85In oo/ TV ) ’ A, |
, =0,
g3In(Q/1y) + g2l /I, V), 1-ghln(Qry) — ghln(eo [TV}, mi A%

(3)

where g,, g5, and g, are the electron—electron coupling constants corresponding to
ordinary scattering and scattering with an umklapp process, J, (4) is the Bessel func-
tion of index ny, A = 8¢, /w,, and Q is a “cutoff energy.”

In the derivation of the matrix elements in (3), use was made of the results of
Ref. 6, where the Green’s functions in the magnetic field were calculated.

Using |g, — g;| < &3, we consider the terms of fourth order for states with
A,,o ~A* n, (for definiteness, we assume below that the constant g, is greater than 0).
It is easy to see that these terms relate vector order parameters for different values of r,
from (3). This coupling near the transition temperature turns out to be effective,
however, only for states (A, , A* , ) and (A, ,,,A* , ), so regions correspond-

ing to the coexistence of waves with four different values of » from (1') appear on the
phase diagram (Fig. 1).

We write an expansion of the free energy for these states:
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FIG. 1. Fragment of the phase diagram in a magnetic field. The values of the quantum numbers » [see (1')]
for the order parameter of the spin density wave, (1), are given.

F=a@, +g)[(T - T, Y, M4, *+T~T, ), W18, ]
t8&: +85)° (61, I A, FHel . M4, | I*
+8.]’120()\)J’30+ 10\)|An0|2|An0+112] M (4)

The dimensional coefficients @ and 3, which are common to the different subphases,
do not affect the nature of the phase diagram; T, is the temperature of the transition
to vector state (3).

The ““vertex angle” of the region in which plane waves with four different values
of n coexist does not depend on the relation between g, and g;. It is determined by
minimizing free energy (4); for the phase (A, , A* , , A, ., A%, ;) with n,7#0 it
is

)

(ST

3
(Tpgoy =<y ~D<S (T, =D, (5)

The case n, = 0 is a special one because of the commensurability effect, and the region
in which this phase exists is given by a different expression:

2
§(T1“T)<(T0‘T)<(T1—T) (6)
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(Fig. 1).

Let us take a brief look at how well these results correspond to the existing
experimental data. On the basis of the expansion of the free energy in (4), one can
show that the jump in the heat capacity at the transition from the metallic phase to
vector state (3) should be smaller by a factor of 1.5 than that in a BCS theory.”® This
circumstance agrees well with measurements of the heat capacity in weak magnetic
fields."!

The branchings which we have found on the phase diagram—branchings of the
basic subphases into smaller subphases, which contain eight wave vectors [with four
different values of n from (1)] near the transition temperature—agree qualitatively
with the experimentally observed breakup of subphases with decreasing temperature.®

With regard to the value of the quantum Hall effect in vector states (3), we note
that it would again be given by the expression p,, = #i/2¢’n,, where the sign of n, is
determined by the component of the vector (A, , A* ) which is larger in absolute
value.V
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