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In a QCD vacuum consisting of statistically independent configurations with

Q = 1, the addition of configurations with Q = 0 spreads out the density of zero
modes and causes the quark condensate to vanish. However, configurations which
lead to confinement restore a nonzero quark condensate.

1. The spontaneous breaking of chiral symmetry in a QCD vacuum is related in
an obvious way to the presence of quark zero modes, since the chiral condensate (Gg)
is, as is well known, proportional to the density of zero modes, v(0):
(Gq) = — (#/V,)v(0). Here V, is the 4D volume. It was shown in Ref. 1 that these
“global” zero modes may arise from a collectivization of “elementary” zero modes of
instantons and anti-instantons in the model of an instanton vacuum. This mechanism
was recently generalized” to the case of an ensemble of arbitrary field configurations
containing elementary regions with quasizero quark modes. A necessary condition for
the operation of this mechanism and for the occurrence of a spontaneous breaking of
chiral symmetry is a statistical independence of the elementary fields, i.e., an indepen-
dence of their spatial positions and color orientations.

In the present letter we show that in the absence of confinement quasizero modes
overlap to such an extent that the global spectrum is spread out, and v(0) (and thus
the spontaneous breaking of chiral symmetry) disappears. When confinement is taken
into account, i.e., when there are corresponding configurations which lead to confine-
ment in the vacuum,® the spontaneous breaking of chiral symmetry is restored.

Following the method of Ref. 2, we write an expression for the density of global
zero modes, v(A), for the case in which there is only a single quasizero mode in each
elementary spectrum. A “Wigner semicircle”®* arises for statistically independent
elementary regions:

v(A) = ;r-‘l,—z(zjw2 — A%)M/2h(2NV? — A?), (1)

where N is the number of elementary regions in the volume V,, and ¥? is the mean
square matrix element of the overlap of the elementary zero modes «#,(x) and u, (x)
from neighboring regions. This mean square value is given by

Vi< |Vi]?>, V= /d‘zuf(z)(—ié)uk(z). (2)

It can be seen from (1) that the spontaneous breaking of chiral symmetry, i.e., a
nonzero {gq), is related to V'? by the relation
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1/2
< §g>= —{}— (?/IZ) (3)

and that (gg) disappears in the limit ¥ — 0. The matrix element ¥ itself is given by
the following expression after a color averaging”” and when the averaging over the
positions of the centers R;, R, is taken into account:

d4zd4s’

2
ve= D AZ

220 2 PR Riut (2~ Ry)dulz — Ri)u™ (& — R)Jula' - R). (4)

The region of large values of x and x' in (4) is a dangerous one from the stand-
point of divergences. One of the integrals dR;, dR, can be evaluated in an elementary
way since the integrand is uniform with respect to shifts, and one volume, V,, cancels
out. For instantons, u(x) falls off as x ~>, and the integral in (4) converges. In gen-
eral, however, the typical behavior of any quasizero solution can be found easily from
the operator — d7, with d = 4; it is

u®(z) ~ |z|7F 73, (5)

where L is the angular momentum for d = 4.

An  instanton zero mode is  proportional to the mapping
Uti(x)=(x,—IiX%#/ ) in a singular gauge and therefore corresponds to L = 1.
However, any solution with a topological charge of zero allows L = 0 and therefore
has the behavior u‘®(x)~|x| > This is the behavior, for example, of quasizero
modes in a color-correlated instanton-(anti-instanton) molecule or of the solutions in
a truncated self-dual field which were discussed in Ref. 2.

The substitution of #‘©(x) into (4) leads to a divergence of the factor (V,V?) as
(V,)', while if we take u‘® as u, and if we take the instanton zero mode u‘'’ as u, we
obtain the logarithmic divergence (V,V?) ~InV, in (4).

Consequently, the appearance of even a vanishingly low concentration of zero
modes #'” (x) leads to divergent mean values for (¥,¥?) in the limit ¥,— « and thus
a zero limit for the condensate (Gg). One might say that the zero modes u® are
analogs of superconducting current carriers, which cause the resistivity to vanish; the
analog or the resistivity would be the chiral condensate {(gg).

We now consider confinement configurations, i.e., vacuum, fields Bp with a zero
or noninteger topological charge, which contribute nonzero values of the Kronecker
part of the correlation functions® ({(F(x,)...F(x,))). It is convenient to single out the
B, dependence explicitly in (4) with the help of the gauge-covariant factors &:

u,'(a:) = (D(Z, R‘i)‘g(zs R‘): (6)

where s is locally gauge-invariant, and ® is given by

x

O(z,y) = Pexp(ig/ B, (2)dz,). (7D

Yy
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Substituting (6) into (4), and incorporating the additional averaging over the
fields B, in the expression for the matrix element V2, we obtain an additional Wilson-
loop factor in (4):

Wuy = tr < ®(R;, 2) D, ®(z, Ry)®(Rk,z') D, ®(z', R:) > . (8)

The corresponding contour goes through the x, R,, R,, x". According to a cluster
expansion’ and Monte Carlo calculations, W falls off in the case of large areas:
W~exp( — oS, ), where o is the string tension, and S,,;, is the minimum area with-
in the loop. Using the factor W,,, we find that ¥,V* converges, that we have
V,V?~1/0 and that, by virtue of (3),

< qq >~ —const\/ylvjxcg—, N ~V,. (9
4

The spontaneous breaking of chiral symmetry and confinement are thus related
phenomena: When confinement disappears, the chiral condensate also disappears.
This effect agrees with lattice calculations.”

In addition, it is clear from the discussion above that a spontaneous breaking of
chiral symmetry is unstable in an instanton vacuum and is disrupted by entities with
0=0.
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