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The topological structure of the Green’s function of the Fermi liquid is analyzed.
This structure does not change upon transition to a marginal Fermi liquid or a
Luttinger Fermi liquid. It changes, however, upon transition to a state such as the
fermion condensate, in which the Fermi surface spreads into a Fermi band.

The discussion of the origin of high-7. superconductivity has recently revived
interest in the uncommon states of the Fermi liquid.' In addition to the standard
Fermi liquid with a clearly defined pole, marginal Fermi liquids,? in which the residue
of Z vanishes, have been analyzed as a logarithmic function of the frequency
[Z~1/In(w./®)] in the Green’s function near the Fermi surface

Z
w — vr(p — pr) +iy(p)sign(p — pr)

G(w,p) =

This situation occurs when the interaction of electrons with transverse photons is
taken into account.® There is also the Luttinger Fermi liquid in which Z decays in a
power-law fashion.* The latter is found in one-dimensional Fermi systems, but it ap-
parently can also be found in systems of higher dimensionality.> Another type of
Fermi liquid, called a fermion condensate, has been suggested in Ref. 6 for a strong
interaction of fermions. In the random-phase approximation the energy £(p) of the
Fermi quasiparticles, which is reckoned from the chemical potential, vanishes not at
the surface p = py, as in the ordinary Fermi system, but over the entire momentum
band p, <p < p,. In other words, the Fermi surface spreads out over the entire “Fermi
band” (the fermion condensate).

We will discuss the general topological structure of the Green’s function for these
systems and we will show that the Luttinger Fermi liquid and the marginal Fermi
liquid belong to the same topological class as the ordinary Fermi liquid, i.e., their

- Green’s function has a vortex singularity in the momentum space and the locus of
points where this characteristic is situated forms the Fermi surface. In the fermion
condensate state the vortex singularity diffuses into a band of finite width (a vortex
sheet), which, by analogy with the vortices in the superfluid, corresponds to the split-
ting of the vortex with one circulation quantum into two half vortices which are linked
by a vortex sheet.

We will consider a single-particle Green’s function G(£),5) on an imaginary se-
miaxis of frequencies @ = iQ). According to the general analytical properties, G(£},5)
can have singularities only at { = 0 (Ref. 7). In the normal Fermi liquid these singu-
larities are situated on the Fermi surface and are characterized by the invariant
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where tr is the trace of the spin or band indices of the Green’s function, and the
integral is taken over an arbitrary contour C in the space (£2,5) which encloses the
singularity. In Fig. 1, we show for simplicity a 2D Fermi liquid, where the contour C
encloses the linear singularity — the Fermi line. The singularity is analytical in nature,
whereas N agrees with the multiplicity of the pole in the singularity. In the ordinary
Fermi liquid, for example, the Green’s function has a first-order pole in the singular-
ity, G(Q,p) ~Z /(z — vppy), where z=v.p — if). Consequently, N=1 for each of
the two spin projections, so the total charge N = 2. It is important that the invariant N
remains an integer even when the singularity is not of a polar nature. This index
describes a shift in the phase ® of the Green’s function as the contour is traversed.
Since this phase shift amounts to 27/, it cannot change continuously and so it is
conserved in the case of small changes in the Green’s function. In this respect, it is
analogous to the topologically stable singularities of the superfluid condensate phase.
It can be said that the Fermi line in Fig. 1 in this analogy corresponds for one spin
component to the quantized vortex line with a circulation quantum N = 1. [In the
case of a 3D Fermi liquid the quantum vortex in a four-dimensional space (3,Q2) forms
a 2D surface — a Fermi surface; for a 1D Fermi liquid the vortex is a point in a 2D
(p, Q) space].

The invariant N remains constant when an ordinary Fermi liquid is replaced by
nonpolar (marginal or Luttinger) Fermi liquids. The Green’s function for a 1D Lut-
tinger spinless Fermi liquid has the following form® near each of the two Fermi points
+pr: Glwk=p+pp)~Wk? —0°)%/ (@ + vk). Extending G analytically to the
imaginary semiaxis, where G(Q,p) ~ (z — vppr )%~ '(2* — vpr)%, and calculating the
integral (1), we find, as in the ordinary case, the same vortex singularity for z = vpp
with N =1, regardless of the value of g. This also holds for the marginal Fermi
liquid>® with G~ [iQ In(iQ) — vp(p — pr) 1~ ". Switching to marginal and Luttinger

FIG. 1. Fermi surface in a 2D (3D) Fermi liquid is a topological stable special vortex line (a surface) in a
three-dimensional (four-dimensional) space Q, p,, p, (£, p,, p,, p.). Upon traversal of this line the phase
of the Green’s function changes by 2#. Such a structure remains the same in marginal and Luttinger Fermi
liquids.
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states thus does not change the topological structure of the Green’s function of the
Fermi liquid, preserving the concept of the Fermi surface as the surface of the vortex
singularities of the Green’s function. The situation does not change when the spin
structure is taken into account. The integral (1) for the ordinary Fermi liquid in this
case gives the total charge N = 2 for the two spin components, and the most that can
happen upon switching to nonpolar Fermi liquids is the splitting of the spin-degener-
ate Fermi surface with N = 2 into two well-defined Fermi surfaces, each with N = 1,
which correspond to holons and spinons.' From the topological point of view, this is
equivalent to the splitting of the Fermi surface by the Pauli magnetic field which
separates the fermion energies with different spin projections, which also gives rise to
nondegenerate Fermi surfaces with N = 1.

The situation is entirely different in the fermion condensate system analyzed in
Ref. 6. The vortex line with N = 1, which cannot disappear because of the topological
stability, expands to a vortex sheet (Fermi band; see Fig. 2 for the dimensionality
D = 2) on which the phase ® of the Green’s function changes abruptly. In the ran-
dom-phase model,® in which the energy £($) =0, and hence G = 1/iQ in the Fermi
band p, < p < p,, the phase ® changes by a constant, equal to 7, upon passage through
Q1 = 0. This means that the boundaries of the vortex sheet are vortices with a half-
integer with an integer circulation quantum N = 1/2 since the phase shift around
them amounts to 7. This is a crude feature, i.e., it remains even in an exact solution of
equations for the Green’s function, which generally does not agree with the result
obtained from the model. the exact solution has not yet been found, although it can be
assumed that in the case of a sufficiently small splitting p, — p,, when the Green’s
function behaves identically near each half-vortex, it is a simple power function

Z
= O (2)
G(p, 0) = (z- val)l/z(z — vaz)l/z ’

23
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FIG. 2. In a fermion condensate the Fermi liquid spreads into a Fermi band, whose boundaries p = p, and
» = p, are half-quantum vortices. Upon traversal of such a half quantum, the phase of the Green’s function

changes by an amount 7.
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which corresponds to the square-root cut in the interval p, < p < p,: the phase P of the
Green’s function differs by an amount 7 on each side of the cut.

In contrast with the marginal and Luttinger Fermi liquids, the system with a
fermion condensate is, in terms of its topological structure, an essentially new class of
Fermi liquids. The change from the Fermi surface in the ordinary Fermi liquid to a
Fermi band in a fermion condensate is linked with a change in the topological charac-
teristic of the Green’s function and is a modification of the Lifshitz topological phase
transitions which occur at zero temperature. This phenomenon can occur not only in a
normal Fermi liquid but also in superconductors, where a sufficiently strong pairing
interaction could lead to a detection of the Fermi surface even in the superconducting
state.® The Fermi surface would be a surface of singularities in the expanded Green’s
function of a superconductor (the Gor’kov functions).
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