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A linear extension of the conformal group which is generated by auxiliary currents
with spin 2 is constructed. The structure and representations of these algebras and
their relation to the group SU( 0 ) are discussed.

Conformal field theory in two-dimensional space allows a unified descriptions of
the behavior of dynamical systems at the critical point and the calculation of their
correlation functions and the spectrum of anomalous dimensions.! The classification
of Tocal fields according to representations of the conformal group plays a fundamental
role in the solution of the “bootstrap” equations, where, as is well known, the solutions
possess a symmetry of higher degree than the conformal symmetry? and contain the
Virasoro algebra as a subalgebra.

It is interesting to further extend the dynamical symmetries of local fields and
generalize the theory to a space of higher dimension.

Let us consider the current algebra

{Ji(2), Jk(v)} = w:’kaz‘s(z ~v), n

where 7,k = 1,..., w,, is a constant symmetric matrix. We construct a new system of
currents which depends quadratically on the original current (1)

(g = %J.-M,-‘;,Jk + 0 ME3a Tk, 2)
where these currents form a closed algebra if the matrices M are symmetric:

{T%(2), T*(9)} = F£'8.T* + 2773, + C*8})6(z — ), (3
and the structure constants F satisfy the system of equations

M0 My = FP* M. 4
The classical central charge in (3) is

CY = ;Miay. (5)

Here the number of currents 7" may be unequal to the number of currents J. The
algebra (3) of particular interest to us was introduced in Refs. 3 and 4.

We assume that the Kac~Moody algebra of the currents (1) is specified by an
arbitrary, nondegenerate, symmetric matrix o, and it is necessary to find a set of
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matrices M satisfying equation (4) together with the structure constants F. Naturally,
algebras which are not isomorphic to each other are also of interest, so we shall
consider all possible linear transformations of the currents J and 7. We can diagona-
lize the matrix @ by means of unitary transformations of the currents J. The trans-
formed matrices M will, as before, be symmetric and satisfy the equation

M°M® = F*M°, (6)

from which we see that they commute with each other [M“M?%] =0 and form a
commutative ring.

As far as the structure constants F are concerned, they are invariant under these
unitary transformations.

Let us now consider a linear transformation of the currents (T = QiT?), in
which the constants F now transform as tensors and the matrices M transform as
vectors. We can study several different solutions of (6) which are not isomorphic to
each other.

1) If the matrix |4 ]| constructed from the eigenvalues of M(M “Y =1“Y) is
nondegenerate, det}|4 || %0, then the current algebra (3) is equivalent to a direct sum
of Virasoro algebras. Let us consider the basis matrices

¢ =diag (0...1..0), 'e’ =5l N

so that M “ = A %¢'. The latter equation can be interpreted as the transformation of the
currents 7 from one basis to another with the matrix 0 = ||4 ||. On the other hand, in
the basis (7) the fundamental algebra (3) is equal to a direct sum of Virasoro alge-
bras.

2) If the matrix ||4 || is degenerate, but there are no nilpotent matrices among the
matrices M, i.e., matrices for which all the eigenvalues are equal to zero, the current
algebra (3) is again a sum of Virasoro algebras, though, of course, a smailer number of
them.

3) If among the matrices M there are nilpotent matrices, they cannot be ex-
pressed in terms of the basis matrices (7), and the current algebra (3) cannot be
expressed as a direct sum of Virasoro algebras.

These three cases exhaust the nonisomorphic solutions of equation (6).

Expanding the currents J and T in a series, we obtain the following system of
commutation relations from (1) and (3) for the coefficients 7/ and L ¢:

Cd
L3, LY = Fl(n— m)La 4o + ]'2-("3 — n)bntm.ols (8a)
(Lo, Th) = —nMETI, ., (8b)
[T:;»T'{;] = "5‘j5n+m,o, (8¢)
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where J,(x) = T exp( —inx) =T Z ", T%(x) =L2Z ~* and relation (2) takes
the form

L2 = T METI, : (9)

o] =

In the latter expressions we have ignored terms proportional to a.

Expression (9) is the natural generalization of the Sugawara construction when
M is different from unity. By standard calculations we can obtain the expression for
the central charge®

CY = trM¢, (10)
and if the o dependence is restored in (8), for the total charge we find

C3, = trM? — 24a9M%ay, (11)

where we have used the normalization found in the literature a, —iy2a’.

We are interested in the extension of the Virasoro algebra (3), (8a), because it
can be used to construct representations of the algebra of SU(« ) which arises in
SU(N) gauge theories in the limit N— «. In fact, the structure constants of the
SU(N) algebra in the two-index basis J,, have the form [J;.J5]
=27/Nsin [ (2n/NYhAm]}J; . 5 (Ref. 6) and for N— o coincide with the structure
constants of the algebras of area-preserving diffeomorphisms of the torus 77,
[Ly,Ly ) = (RAm)L; , 5. The latter algebra coincides with the subalgebra of arbi-
trary diffeomorphisms of the torus®®

[L}‘,L,l,,] = (n1 — ml)L}Hmv [L?,,L?h] = (ng — mﬂ)[‘?wm

(L, L) = —mu L3 + "2L!15+m (12)

if we set L; = n,L . — n,L%. We shall show that these algebras can be constructed
using the basis algebra (8a).

Let the eigenvalues of the matrix M “ be equal to each other and proportional to
the Nth root of unity M* = @I, ®" = 1. Then F¥* =6, , ,. modulo N, so that

1 . .
L. = z:iw“: Y Y A (13)
and the algebra (8a) takes the form
C.
[Lna, Lmb] =(n- m)Lptm,atb + ;;b ("8 - ”)5n+m.0 . (1

For N « it reproduces the subalgebra in (12).

Let us now consider the third case, where the matrices M are nilpotent. In this
case the basis algebra (8a), (3) is not isomorphic to the direct sum of Virasoro alge-
bras. Using the Jordan normal form of the matrix M, it can be proved that the nilpo-
tent matrices M form a commutative ring when and only when they have the form
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M® = (Le,¢6%...eN 1),

0 1 0
(15)
e =
1
10 0
and ¥ = eV = ... = 0. The matrix M? corresponds to the usual energy-momen-

tum tensor 7(Z) of the conformal theory, and the other matrices correspond to new
fields 7¢ = Q%Z ~ " with conformal spin S = 2. They determine the algebra

C
[Ln) Q= (n—m)Qsm + 75 (n° = W)entm.o:
@, eQnl=
= {(”"m)Qa+b +g§£("3"”)5n+m,o: if 1<a+b<N-1J (16)
0

n4+m

y if a+b2N,

which is no longer isomorphic to the direct sum of Virasoro algebras. We note that the
simplest of the minimal models containing a primary field of spin 2 is M(14/15).
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