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The local spin polarization of electrons in an electric field leads to the appearance
of a nuclear electric resonance and localized electron spin resonance in a bulk
sample.

In media with a lowered symmetry a spin-orbit interaction causes a spin polariza-
tion of electrons as a result of the flow of current.’

A random distribution of impurities and defects in conductors leads to a local
distribution of the spatial symmetry (the local mesoscopic effect) and to a spin polar-
ization in an electric field in regions where the electron is scattered coherently by a
random potential. The physical reason for such a local spin polarization is the spin
relaxation of the current carriers. The average polarization of a macroscopic sample in
this case is zero since the spins of the individual parts of the sample cancel each other.

The principal result on which we wish to focus attention in this letter” is the fact
that the mesoscopic spin polarization can be observed in a massive sample, despite the
fact that its macroscopic polarization is absent under conditions when the square of
the local spin density can be observed directly in an experiment. This can be done, for
example, in a nuclear electric resonance predicted by us' or a localized-spin resonance
excited by an electric field.

The local electron spin at a given point in the sample, which arises as a result of
the action of an rf electric field E,,, varies with time at a frequency w. A hyperfine
interaction of electron and nuclear spins or an exchange interaction with a localized
spin causes transitions between the nuclear (electron) magnetic sublevels in a static
magnetic field H, which are excited by an electric field. The intensity maximum of
these transitions occurs at a frequency of the nuclear magnetic (or electron spin)
resonance.

The intensity of the resonance in a bulk sample is proportional to the spatial
fluctuations of the spin density at a given point §(S? (r))dr(S, is the spin component
at right angles to the external magnetic field). The quantity (S2 (r)), in contrast with
the average spin, has the same sign for all local regions, and therefore the resonance
intensity is proportional to the volume of the sample.

To calculate the spin density fluctuations, we can use the graphic impurity tech-
nique. Examples of the important diagrams which give f(S? (r))dr with a large mo-
mentum transfer at the vertices and which correspond to the local spin operator are
shown in Fig. 1. The diagrams such as those in Fig. la, which contain two diffusons
and vertices, in which the sign of the imaginary part of the Green’s function changes,
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FIG. 1. Diagrams showing the spin density fluctuations. (a) Two-diffuson diagrams in which the imaginary
part of the Green’s function reverses sign at the vertices; (b) three-diffuson (three-cooperon) diagrams. The
vertices on the left side correspond to the spin operators and those on the right (the wavy line) correspond
to the operators which interact with the electric field.

describe the onset of polarization as a result of spin-orbit coupling due to the real
absorption of the electric component of the microwave field. Similar diagrams which
contain two cooperons are small in the parameter 1/p/, where p is the Fermi mo-
mentum, and / is the mean free path. Diagrams in which the sign at the vertices does
not change,” including the diagram in Fig. 1b, describe the electron polarization by
the electric field without absorption. These diagrams are physically similar to the
diagrams for the correlation function of the real parts of the magnetic susceptibility.
The diagrams with diffusons and those with cooperons in this case should be taken
into account in these three-ladder diagrams. These components differ in a static mag-
netic field.

Below we present the results of calculations of (S2(r)) for a uniform electric
field. After analytic continuation in the temperature diagram technique we can write
the contribution from the diagrams with two diffusons in the form

v dx ve dX'
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where 4 = 27vr(eE, V)’ /T?d, v is the density of states, 7 is the momentum relaxa-
tion time, d is the dimension of space f'(x) = lcosh ~? (x/2), and the values of D,
which determine the spin structure of the diffuson (cooperon) in the presence of
Larmor precession and the spin-orbit mechanism of the spin relaxation, are given by

D =(Dq?/T +ix +i +4' + ag)! (2)
im(X) = (Dq" [T + ix + imay, gjaso 0) .

Here a, = w, /T, o, is the Larmor frequency, 7 is the temperature, @, = (L1/
L) Ly = (D/T)V?, D is the diffusion coefficient, L, = (D7 )'"?, 7 is the spin
relaxation time, a, = 1/T7,<1, and 7, is the inelastic scattering time. The result of
calculation of the diagrams with three diffusons is
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When a, <1, the principal contribution to (S? (r)) comes from the two-diffuson
diagrams which contain only D, and which do not depend on the magnetic field. As a
result, the Larmor precession is inconsequential and
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where 8, (r) for d = 2 is the two-dimensional spin density, o and g are respectively the
conductivity and the conductance of the film, and L, = (Dr,)'">.

In the case of strong spin-orbit coupling @, > 1 (S} (r)) can be determined from
the diagram in Fig. 1a and in Fig. 1b. In the two-dimensional case we have
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where the logarithmic term is related only to the two-diffuson diagrams, f = L,/Ly,
L, = (#ic/eH)"? is the magnetic length, and the function f,(a,,, #), which is asso-
ciated with the three-cooperon components, is given by
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In the three-dimensional case, the diagrams in Figs. 1a and 1b give the same in order
of magnitude contribution:
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where
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It can be seen from expressions (5)—(8), therefore, that at H = 0 the three-cooperon
compornents are of the same order of magnitude as the diffuson components, and that
the dependence on the maguetic field stems from their suppression. The characteristic
magnetic fields are determined by the relation L, ~ L.

The mesoscopic fluctuations of the local spin polarization {S:(r)) in the electric
field account for the dependence of the nonuniform spin resonance line width on the
electric field, as noted in Ref. 4. Without resorting to detailed calculations, we note
that the Larmor spin precession causes this nonuniform width to change, in contrast
with the intensity.
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' This topic was also discussed in part in an article published in the Proceedings of the XX International
Conference on Semiconductor Physics.”

2 These diagrams were not included in Refs. 3 and 4, which were brought to our attention when this article
was being prepared for publication.
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