Magnetoabsorption at quantum points
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An exact solution is derived for the problem of the frequencies and intensities of the
optical absorption lines of a system of magnetized 2D electrons which are confined
ata quantum point by a parabolic potential. No restriction is imposed on the
interaction between particles.

The Kohn theorem' asserts that a resonance occurs in the absorption of a uni-
form rf electric field by a system of interacting electrons in a magnetic field at the
cyclotron frequency, regardless of the nature of the interaction, provided that it de-
pends on only the difference between the coordinates of particles. That result was
derived for spatially uniform systems. Brey er al.,” recently showed that a similar
exclusion of the interaction occurs for particles which are moving in a 1D parabolic
potential. The parabolic approximation of the lateral potential of 1D microstructures
(quantum wires) and zero-dimensional microstructures (quantum points) based on
2D systems has been confirmed well by theory® and experiments.*® In the present
letter we examine a quantum point in a magnetic field which is directed perpendicular
to the plane of the heterojunction. The confining potential is V(3) = m’p*/2, where

m is the effective mass, and p = Vx? + y? is the in-plane distance from the center of the
quantum point. We will use a method which reveals not only the exact resonant
frequencies of an N-particle system in the potential V'(p) in the presence of a magnetic
field but also the intensities of the corresponding lines (these intensities were not
found in Refs. 1 and 2). The distinctive feature of the dynamics in a parabolic poten-
tial which makes the frequencies of optical transitions independent of the distance
between electrons becomes clear in the process.

We write the Hamiltonian of our system in the symmetric gauge of the vector
potential A = (1/2)[Bpg] in the following form (%= 1):
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where B is the magnetic field, u(p;, — g, ) is the binary interaction potential and ﬁspin
is the spin part of the energy of the system in a magnetic field.

We replace g, (k =1, 2,...N) by the variables R and x,, x,, ...xy_ ;, which make
it possible to separate out the center-of-mass motion. These variables are normalized in
a special way:®
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Transformation (2) conserves the part of Hamiltonian 4% which does not contain the

interaction Zu(p; — p, ). In this term itself there is no R dependence after the trans-
formation to the new variables. We can thus write
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where the composite frequency is @ =/ Q° + w?/4, ®, = eB/mc, and X and Y are
components of the vector R.

The coordinate part of the wave function of the system is thus
V=1, (R)-d(x,... xy_ ), where ¢0,,, is the solution of the Schrodinger equation
for a 2D isotropic oscillator in a magnetic field directed along the normal to the

oscillation plane, n and M are the radial and azimuthal quantum numbers, and the
energy levels are given by’

w
Ey =Qn+ M+ )5+ —ZLM n=0,1,2..; M=0,+1,+2... . (4)

The wave function ¢,,, (R) is always symmetric with respect to all particles, so the
Pauli principle must be satisfied by virtue of the function ¢ and the spin factor.

In the dipole approximation, the interaction with the electromagnetic field is
described by the Hamiltonian H,,, = eE(#)32g, = eE(1)y/N R, which does not contain
the variables x,, X,,...Xy _ ;, and which is therefore diagonal in the quantum numbers
of the function ¢. The optical absorption of this N-particle system thus looks the same
as that of an isotropic 2D oscillator in the field of a wave of amplitude VN E. The
resonant frequencies are @ + w_./2 and@ — w_/2 for the transitions AM = + 1 and
AM = — 1, respectively. In other words, the left-hand and right-hand polarized waves
are absorbed at different frequencies. The intensity of each line is proportional to the
number of particles at the quantum point, N, while the magnetic field dependence of
these intensities is given by the formulas (for the oscillator strengths)

“ v
w+w,[2 ~w,/2
w w

[the matrix element of the coordinate R between the functions 4/,,, (R) is proportion-
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al to (ma) ~?]. In a weak magnetic field w. <, the intensities of the two lines
are of course, equal, while at o,>»Q we have the asymptotic behavior
J, ~B°%J_~B 2

It can be seen from the discussion above that a distinctive feature of the parabolic
potential is the existence among the various natural modes of the system of a mode
such that the corresponding motion does not involve the excitation of internal degrees
of freedom, which are described by the coordinates x,,....xy_ . If the interaction
between particles depends on only the differences g, — p,, this interaction will have no
effect on the given mode. Remarkably, it is this mode which is responsible for the
absorption of long-wavelength electromagnetic radiation (radiation with a wavelength
greater than the diameter of the quantum point). The experiments of which we are
aware on IR magnetoabsorption at InSb quantum points® have revealed the position of
the absorption peak to be independent of N, in agreement with this theory, So far,
there are no results on the magnetic field dependence of the intensities. Nazin and
Shikin® established that the frequency of a collective mode is the same as the one-
particle frequency of a parabolic potential according to classical mechanics for the case
of a Coulomb interaction between particles.

It is also a straightforward matter to deal with the effect of a uniform electric field
in the plane of the system on a quantum point. Let us assume, for example, that the
field E is directed along the y axis. The wave function then becomes

W — e[p(,XdlnM(X’Y_’_ Y )o(x,..xy_ 1),

where p, = — eENw,./(20%), and ¥, = eE/N /(m£?). A change in the energy of
this system corresponds to a common shift of all levels by an amount
AE = — ’E*N/(2mQ?). The polarizability of a quantum point (in its plane) is thus
independent of the magnetic field and is equal to N times the polarizability of a har-
monic oscillator, €%/ (mQ?).
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